Sparser Johnson-Lindenstrauss Transforms

被引:157
作者
Kane, Daniel M. [1 ]
Nelson, Jelani [2 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
新加坡国家研究基金会;
关键词
Algorithms; Theory; Dimensionality reduction; Johnson-Lindenstrauss; numerical linear algebra; streaming algorithms; MATRICES; LEMMA;
D O I
10.1145/2559902
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give two different and simple constructions for dimensionality reduction in l(2) via linear mappings that are sparse: only an O(epsilon)- fraction of entries in each column of our embedding matrices are non-zero to achieve distortion 1+epsilon with high probability, while still achieving the asymptotically optimal number of rows. These are the first constructions to provide subconstant sparsity for all values of parameters, improving upon previous works of Achlioptas [2003] and Dasgupta et al. [2010]. Such distributions can be used to speed up applications where l(2) dimensionality reduction is used.
引用
收藏
页数:23
相关论文
共 40 条
[1]   Database-friendly random projections: Johnson-Lindenstrauss with binary coins [J].
Achlioptas, D .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 66 (04) :671-687
[2]   An Almost Optimal Unrestricted Fast Johnson-Lindenstrauss Transform [J].
Ailon, Nir ;
Liberty, Edo .
ACM TRANSACTIONS ON ALGORITHMS, 2013, 9 (03)
[3]   Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes [J].
Ailon, Nir ;
Liberty, Edo .
DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (04) :615-630
[4]   THE FAST JOHNSON-LINDENSTRAUSS TRANSFORM AND APPROXIMATE NEAREST NEIGHBORS [J].
Ailon, Nir ;
Chazelle, Bernard .
SIAM JOURNAL ON COMPUTING, 2009, 39 (01) :302-322
[5]   Problems and results in extremal combinatorics - I [J].
Alon, N .
DISCRETE MATHEMATICS, 2003, 273 (1-3) :31-53
[6]  
[Anonymous], 1999, Modern Computer Algebra
[7]  
[Anonymous], 2009, P 26 ANN INT C MACH, DOI DOI 10.1145/1553374.1553516
[8]   An algorithmic theory of learning: Robust concepts and random projection [J].
Arriaga, RI ;
Vempala, S .
MACHINE LEARNING, 2006, 63 (02) :161-182
[9]  
Braverman Vladimir, 2010, RADEMACHER CHAOS RAN
[10]  
CARTER JL, 1979, J COMPUT SYST SCI, V18, P143, DOI 10.1016/0022-0000(79)90044-8