High yield multiwall carbon nanotube synthesis in supercritical fluids

被引:29
|
作者
Smith, Danielle K. [1 ]
Lee, Doh C. [1 ]
Korgel, Brian A. [1 ]
机构
[1] Univ Texas, Dept Chem Engn, Texas Mat Inst, Ctr Nano & Mat Sci & Technol, Austin, TX 78712 USA
关键词
D O I
10.1021/cm060589m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiwall carbon nanotubes (MWNTs) with outer diameters of 10 - 50 nm and wall thicknesses of 5 - 20 nm were synthesized in supercritical toluene at temperatures ranging from 600 to 645 degrees C at 8.3 MPa. Nanotube formation was catalyzed by metallocenes such as cobaltocene, nickelocene, and ferrocene or cobalt or iron nanocrystals; toluene served as both the solvent and the carbon source for nanotube growth. Supplemental carbon sources, either hexane or ethanol (similar to 30 vol%), increased the yield of the carbon nanotubes relative to pure toluene, and catalytic amounts of water (0.75 vol%) minimized the formation of carbon filaments and amorphous carbon. Cobaltocene, with ethanol as a supplemental carbon source, gave the highest percentage of nanotubes in the product (similar to 70%) and the highest conversion of toluene to MWNTs (similar to 4%). The MWNTs tended to exhibit bamboo morphology and appear to grow by a folded-growth mechanism with graphitic sheets wrapped around the seed metal particles. Cobaltocene was also found to catalyze coiled nanotube formation, with the appearance of springs, hairpins, lassos, and coiled ropes.
引用
收藏
页码:3356 / 3364
页数:9
相关论文
共 50 条
  • [41] Solution Processable High Performance Multiwall Carbon Nanotube-Si Heterojunctions
    Dwivedi, Neeraj
    Dhand, Chetna
    Anderson, Erik C.
    Kumar, Rajeev
    Liao, Baochen
    Yeo, Reuben J.
    Khan, Raju
    Carey, J. David
    Saifullah, Mohammad S. M.
    Kumar, Sushil
    Malik, Hitendra K.
    Hashmi, S. A. R.
    Srivastava, Avanish K.
    Sankaranarayanan, Subramanian K. R. S.
    Stangl, Rolf
    Duttagupta, Shubham
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (11)
  • [42] Multiwall Carbon Nanotube for Adsorption of Acetic Acid
    Ozcan, Onder
    Inci, Ismail
    Asci, Yavuz Selim
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2013, 58 (03): : 583 - 587
  • [43] Multiwall carbon nanotube impedance matching section
    Günel, Tayfun
    Progress in Electromagnetics Research Letters, 2020, 89 : 69 - 75
  • [44] Adsorption of Arsenic (III) on Multiwall Carbon Nanotube
    Choudhury, Md. Shamimul Haque
    Sagar, Sourav Mahmood
    Ullah, Md. Barkat
    Bodruzzaman, A. B. M.
    Soga, T.
    Mominuzzaman, Sharif Mohammad
    2012 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2012,
  • [45] Electric current distribution of a multiwall carbon nanotube
    Chen, Li-Ying
    Chen, Yu-Jyun
    Chang, Chia-Seng
    AIP ADVANCES, 2016, 6 (07):
  • [46] Noncoaxial resonance of an isolated multiwall carbon nanotube
    Yoon, J
    Ru, CQ
    Mioduchowski, A
    PHYSICAL REVIEW B, 2002, 66 (23) : 2334021 - 2334024
  • [47] Thermal transport in multiwall carbon nanotube buckypapers
    Yue, Yanan
    Huang, Xiaopeng
    Wang, Xinwei
    PHYSICS LETTERS A, 2010, 374 (40) : 4144 - 4151
  • [48] The role of the geometry in multiwall carbon nanotube interconnects
    Bellucci, S.
    Onorato, P.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
  • [49] Determination of the intershell conductance in a multiwall carbon nanotube
    Stetter, A.
    Vancea, J.
    Back, C. H.
    APPLIED PHYSICS LETTERS, 2008, 93 (17)
  • [50] Synthesis of noble metal/carbon nanotube composites in supercritical methanol
    Sun, ZY
    Fu, L
    Liu, ZM
    Han, BX
    Liu, YQ
    Du, JM
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (03) : 691 - 697