Heat transfer through hydrogenated graphene superlattice nanoribbons: a computational study

被引:16
作者
Dehaghani, Maryam Zarghami [1 ]
Habibzadeh, Sajjad [2 ]
Farzadian, Omid [3 ]
Kostas, Konstantinos, V [3 ]
Saeb, Mohammad Reza [4 ]
Spitas, Christos [3 ]
Mashhadzadeh, Amin Hamed [3 ]
机构
[1] Univ Tehran, Coll Engn, Sch Chem Engn, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Chem Engn, Tehran Polytech, Tehran, Iran
[3] Nazarbayev Univ, Sch Engn & Digital Sci, Mech & Aerosp Engn, Nur Sultan 010000, Kazakhstan
[4] Gdansk Univ Technol, Fac Chem, Dept Polymer Technol, G Narutowicza 11-12, PL-80233 Gdansk, Poland
关键词
THERMAL-CONDUCTIVITY; TRANSPORT; MECHANICS; COHERENT;
D O I
10.1038/s41598-022-12168-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optimization of thermal conductivity of nanomaterials enables the fabrication of tailor-made nanodevices for thermoelectric applications. Superlattice nanostructures are correspondingly introduced to minimize the thermal conductivity of nanomaterials. Herein we computationally estimate the effect of total length and superlattice period (l(p)) on the thermal conductivity of graphene/graphane superlattice nanoribbons using molecular dynamics simulation. The intrinsic thermal conductivity (kappa(infinity)) is demonstrated to be dependent on l(p). The kappa(infinity) of the superlattice, nanoribbons decreased by approximately 96% and 88% compared to that of pristine graphene and graphane, respectively. By modifying the overall length of the developed structure, we identified the ballistic-diffusive transition regime at 120 nm. Further study of the superlattice periods yielded a minimal thermal conductivity value of 144 W m(-1) k(-1 )at l(p) = 3.4 nm. This superlattice characteristic is connected to the phonon coherent length, specifically, the length of the turning point at which the wave-like behavior of phonons starts to dominate the particle-like behavior. Our results highlight a roadmap for thermal conductivity value control via appropriate adjustments of the superlattice period.
引用
收藏
页数:9
相关论文
共 54 条
[31]   Coherent and incoherent phonon thermal transport in isotopically modified graphene superlattices [J].
Mu, Xin ;
Zhang, Teng ;
Go, David B. ;
Luo, Tengfei .
CARBON, 2015, 83 :208-216
[32]  
Nalwa H., 2000, HDB NANOSTRUCTURED M
[33]   Lattice thermal properties of graphane: Thermal contraction, roughness, and heat capacity [J].
Neek-Amal, M. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2011, 83 (23)
[34]   Electric field effect in atomically thin carbon films [J].
Novoselov, KS ;
Geim, AK ;
Morozov, SV ;
Jiang, D ;
Zhang, Y ;
Dubonos, SV ;
Grigorieva, IV ;
Firsov, AA .
SCIENCE, 2004, 306 (5696) :666-669
[35]   A theoretical analysis of the thermal conductivity of hydrogenated graphene [J].
Pei, Qing-Xiang ;
Sha, Zhen-Dong ;
Zhang, Yong-Wei .
CARBON, 2011, 49 (14) :4752-4759
[36]   FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS [J].
PLIMPTON, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) :1-19
[37]   Graphane and hydrogenated graphene [J].
Pumera, Martin ;
Wong, Colin Hong An .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (14) :5987-5995
[38]   Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: A nonequilibrium molecular dynamics study [J].
Rajabpour, A. ;
Allaei, S. M. Vaez ;
Kowsary, F. .
APPLIED PHYSICS LETTERS, 2011, 99 (05)
[39]   Universal interfacial thermal resistance at high frequencies [J].
Rajabpour, Ali ;
Volz, Sebastian .
PHYSICAL REVIEW B, 2014, 90 (19)
[40]  
Revuri V., 2019, BIOMEDICAL APPL GRAP, P143