Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion

被引:101
|
作者
Zhang, Xinguang [1 ,3 ]
Liu, Lishan [2 ,3 ]
Wu, Yonghong [3 ,4 ]
Wiwatanapataphee, B. [3 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[3] Curtin Univ, Dept Math & Stat, Perth, WA 6845, Australia
[4] Zhongnan Univ Econ & Law, Sch Math & Stat, Wuhan 430073, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional advection-dispersion equation; Critical point theorem; Anomalous diffusion; Variational methods; LEVY MOTION; EXISTENCE;
D O I
10.1016/j.aml.2016.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of nontrivial solutions for a class of fractional advection-dispersion equations. A new existence result is established by introducing a suitable fractional derivative Sobolev space and using the critical point theorem. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [2] Existence of nontrivial solutions for a system of fractional advection–dispersion equations
    Dexiang Ma
    Lishan Liu
    Yonghong Wu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1041 - 1057
  • [3] Existence of nontrivial solutions for a system of fractional advection-dispersion equations
    Ma, Dexiang
    Liu, Lishan
    Wu, Yonghong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1041 - 1057
  • [4] The time fractional diffusion equation and the advection-dispersion equation
    Huang, F
    Liu, F
    ANZIAM JOURNAL, 2005, 46 : 317 - 330
  • [5] Fractional nonlinear diffusion equation, solutions and anomalous diffusion
    Silva, A. T.
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 65 - 71
  • [6] Numerical simulation of fractional advection-diffusion equation: A method to anomalous diffusion
    Xia, Y.
    Wu, J. C.
    CALIBRATION AND RELIABILITY IN GROUNDWATER MODELING: MANAGING GROUNDWATER AND THE ENVIRONMENT, 2009, : 433 - 436
  • [7] Solutions for a generalized fractional anomalous diffusion equation
    Lv, Long-Jin
    Xiao, Jian-Bin
    Zhang, Lin
    Gao, Lei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 301 - 308
  • [8] Ground state solutions of a fractional advection-dispersion equation
    Qiao, Yan
    Chen, Fangqi
    An, Yukun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (09) : 5267 - 5282
  • [9] Analytical approximate solutions of Riesz fractional diffusion equation and Riesz fractional advection-dispersion equation involving nonlocal space fractional derivatives
    Ray, S. Saha
    Sahoo, S.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (13) : 2840 - 2849
  • [10] On solutions of time-fractional advection-diffusion equation
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4489 - 4516