Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion

被引:105
作者
Zhang, Xinguang [1 ,3 ]
Liu, Lishan [2 ,3 ]
Wu, Yonghong [3 ,4 ]
Wiwatanapataphee, B. [3 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Shandong, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
[3] Curtin Univ, Dept Math & Stat, Perth, WA 6845, Australia
[4] Zhongnan Univ Econ & Law, Sch Math & Stat, Wuhan 430073, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional advection-dispersion equation; Critical point theorem; Anomalous diffusion; Variational methods; LEVY MOTION; EXISTENCE;
D O I
10.1016/j.aml.2016.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of nontrivial solutions for a class of fractional advection-dispersion equations. A new existence result is established by introducing a suitable fractional derivative Sobolev space and using the critical point theorem. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 15 条
[1]   FIELD-STUDY OF DISPERSION IN A HETEROGENEOUS AQUIFER .2. SPATIAL MOMENTS ANALYSIS [J].
ADAMS, EE ;
GELHAR, LW .
WATER RESOURCES RESEARCH, 1992, 28 (12) :3293-3307
[2]  
[Anonymous], 2013, ELECT J DIFFER EQU
[3]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[4]   Application of a fractional advection-dispersion equation [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1403-1412
[5]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240
[6]   A critical point theorem and existence results for a nonlinear boundary value problem [J].
Bonanno, Gabriele ;
D'Agui, Giuseppina .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) :1977-1982
[7]   Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport [J].
Eggleston, J ;
Rojstaczer, S .
WATER RESOURCES RESEARCH, 1998, 34 (09) :2155-2168
[8]   Variational formulation for the stationary fractional advection dispersion equation [J].
Ervin, VJ ;
Roop, JP .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (03) :558-576
[9]   Existence of solutions for a class of fractional boundary value problems via critical point theory [J].
Jiao, Feng ;
Zhou, Yong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1181-1199
[10]  
Risken Hannes., 1988, FOKKER PLANCK EQUATI, Vsecond