Lazy Cohomology Generators Enable the Use of Complementarity for Computing Halo Current Resistive Distribution in Fusion Reactors

被引:4
作者
Bettini, Paolo [1 ,2 ]
Specogna, Ruben [3 ]
机构
[1] Univ Padua, Dipartimento Ingn Ind, I-35131 Padua, Italy
[2] EURATOM ENEA Assoc, Consorzio RFX, I-35127 Padua, Italy
[3] Univ Udine, Dipartimento Ingn Elettr Gest & Meccan, I-33100 Udine, Italy
关键词
Cohomology computation; fusion reactor design; halo current;
D O I
10.1109/TMAG.2013.2281506
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a methodology to efficiently calculate the resistive distribution of halo currents in 3-D conductive structures that surround the plasma in magnetic confinement fusion devices. The domain of the problem is so complicated that two complementary formulations are used to monitor the discretization error. It turns out that thousands of cohomology generators are needed by the electric vector potential electrokinetic formulation, which would require an enormous amount of memory and computing power to retrieve them even using state-of-the-art algorithms. To solve this challenging problem, we present a novel algorithm to generate the absolute second cohomology group generators exploiting the idea of lazy cohomology generators stored as sparse vectors. The proposed algorithm allows a saving of between four and five orders of magnitude computational time.
引用
收藏
页码:489 / 492
页数:4
相关论文
共 17 条
[1]   Specification of asymmetric VDE loads of the ITER tokamak [J].
Bachmann, C. ;
Sugihara, M. ;
Roccella, R. ;
Sannazzaro, G. ;
Gribov, Y. ;
Riccardo, V. ;
Hender, T. C. ;
Gerasimov, S. N. ;
Pautasso, G. ;
Belov, A. ;
Lamzin, E. ;
Roccella, M. .
FUSION ENGINEERING AND DESIGN, 2011, 86 (9-11) :1915-1919
[2]   Numerical modeling of 3D halo current path in ITER structures [J].
Bettini, Paolo ;
Marconato, Nicolo ;
Palumbo, Maurizio Furno ;
Peruzzo, Simone ;
Specogna, Ruben ;
Albanese, Raffaele ;
Rubinacci, Guglielmo ;
Ventre, Salvatore ;
Villone, Fabio .
FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) :529-532
[3]  
Bossavit A., 1998, Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements
[4]   A new set of basis functions for the discrete geometric approach [J].
Codecasa, Lorenzo ;
Specogna, Ruben ;
Trevisan, Francesco .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) :7401-7410
[5]   Base functions and discrete constitutive relations for staggered polyhedral grids [J].
Codecasa, Lorenzo ;
Specogna, Ruben ;
Trevisan, Francesco .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (9-12) :1117-1123
[6]  
Cormen T., 2001, Introduction to Algorithms
[7]   Lazy Cohomology Generators: A Breakthrough in (Co) homology Computations for CEM [J].
Dlotko, Pawel ;
Specogna, Ruben .
IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) :577-580
[8]   Physics inspired algorithms for (co)homology computations of three-dimensional combinatorial manifolds with boundary [J].
Dlotko, Pawel ;
Specogna, Ruben .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (10) :2257-2266
[9]   CRITICAL ANALYSIS OF THE SPANNING TREE TECHNIQUES [J].
Dlotko, Pawel ;
Specogna, Ruben .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (04) :1601-1624
[10]  
Dlotko P, 2010, CMES-COMP MODEL ENG, V60, P247