On the complete linear Weingarten spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms

被引:9
作者
Gomes, Jose N. [1 ]
de Lima, Henrique F. [2 ]
dos Santos, Fabio R. [2 ]
Velasquez, Marco Antonio L. [2 ]
机构
[1] Univ Fed Amazonas, Dept Matemat, BR-69077070 Manaus, Amazonas, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
Lorentzian space forms; Mean curvature; Normalized scalar curvature; Complete spacelike hypersurfaces; Isoparametric hypersurfaces; CONSTANT SCALAR CURVATURE; DE-SITTER SPACE; MEAN-CURVATURE; HYPERBOLIC CYLINDERS; MAXIMAL SPACE; GEOMETRY;
D O I
10.1016/j.jmaa.2014.03.090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with complete linear Weingarten spacelike hypersurfaces immersed in a Lorentzian space form, having two distinct principal curvatures. In this setting, we show that such a spacelike hypersurface must be isometric to a certain isoparametric hypersurface of the ambient space, under suitable restrictions on the values of the mean curvature and of the norm of the traceless part of its second fundamental form. Our approach is based on the use of a Simons type formula related to an appropriated Cheng-Yau modified operator jointly with some generalized maximum principles. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:248 / 263
页数:16
相关论文
共 26 条
[1]  
Abe N., 1987, YOKOHAMA MATH J, V35, P123
[2]   ON SPACELIKE HYPERSURFACES WITH CONSTANT MEAN-CURVATURE IN THE DE SITTER SPACE [J].
AKUTAGAWA, K .
MATHEMATISCHE ZEITSCHRIFT, 1987, 196 (01) :13-19
[3]   Complete spacelike hypersurfaces with constant mean curvature in the de Sitter space: A gap theorem [J].
Brasil, A ;
Colares, AG ;
Palmas, O .
ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (03) :847-866
[4]  
Calabi E., 1970, Proc. Symp. Pure Math., VXV, P223
[5]   Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space [J].
Camargo, F. E. C. ;
Chaves, R. M. B. ;
Sousa, L. A. M., Jr. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (06) :592-599
[6]   The geometry of closed conformal vector fields on Riemannian spaces [J].
Caminha, A. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02) :277-300
[7]   A new characterization of hyperbolic cylinder in anti-de Sitter space H1n+1(-1) [J].
Cao, Linfen ;
Wei, Guoxin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) :408-414
[8]  
Cartan E., 1938, Ann. Mat. Pura Appl., V17, P177
[9]  
Chao XL, 2013, OSAKA J MATH, V50, P715
[10]   New characterizations for hyperbolic cylinders in anti-de Sitter spaces [J].
Chaves, R. M. B. ;
Sousa, L. A. M., Jr. ;
Valerio, B. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) :166-176