共 44 条
Moclobemide upregulated Bcl-2 expression and induced neural stem cell differentiation into serotoninergic neuron via extracellular-regulated kinase pathway
被引:65
作者:
Chiou, Shih-Hwa
Ku, Hung-Hai
Tsai, Tung-Hu
Lin, Heng-Liang
Chen, Li-Hsin
Chien, Chan-Shiu
Ho, Larry L. -T.
Lee, Chen-Hsen
Chang, Yuh-Lih
机构:
[1] Vet Gen Hosp, Dept Med Res & Educ, Taipei, Taiwan
[2] Natl Yang Ming Univ, Inst Clin Med, Taipei, Taiwan
[3] Natl Yang Ming Univ, Inst Anat & Cell Biol, Taipei, Taiwan
[4] Natl Yang Ming Univ, Inst Tradit Med, Taipei, Taiwan
[5] Vet Gen Hosp, Dept Pharm, Taipei, Taiwan
关键词:
moclobemide;
neural stem cell;
Bcl-2;
serotonin;
ERK;
HPLC;
D O I:
10.1038/sj.bjp.0706766
中图分类号:
R9 [药学];
学科分类号:
1007 ;
摘要:
1 Moclobemide (MB) is an antidepressant drug that selectively and reversibly inhibits monoamine oxidase-A. Recent studies have revealed that antidepressant drugs possess the characters of potent growth-promoting factors for the development of neurogenesis and improve the survival rate of serotonin (5-hydroxytrytamine; 5-HT) neurons. However, whether MB comprises neuroprotection effects or modulates the proliferation of neural stem cells (NSCs) needs to be elucidated. 2 In this study, firstly, we used the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay to demonstrate that 50 mu M MB can increase the cell viability of NSCs. The result of real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that the induction of MB can upregulate the gene expressions of Bcl-2 and Bcl-xL. By using caspases 8 and 3, ELISA and terminal dUTP nick-end labeling ( TUNEL) assay, our data further confirmed that 50 mM MB-treated NSCs can prevent FasL-induced apoptosis. 3 The morphological findings also supported the evidence that MB can facilitate the dendritic development and increase the neurite expansion of NSCs. Moreover, we found that MB treatment increased the expression of Bcl-2 in NSCs through activating the extracellular-regulated kinase (ERK) phosphorylation. 4 By using the triple-staining immunofluorescent study, the percentages of serotonin- and MAP-2-positive cells in the day 7 culture of MB-treated NSCs were significantly increased (P < 0.01). Furthermore, our data supported that MB treatment increased functional production of serotonin in NSCs via the modulation of ERK1/2. In sum, the study results support that MB can upregulate Bcl-2 expression and induce the differentiation of NSCs into serotoninergic neuron via ERK pathway.
引用
收藏
页码:587 / 598
页数:12
相关论文