Cu(In,Ga)Se2 thin-film solar cells grown with cracked selenium

被引:15
|
作者
Kawamura, Masahiro [1 ]
Fujita, Toshiyuki [1 ]
Yamada, Akira [1 ]
Konagai, Makoto [1 ]
机构
[1] Tokyo Inst Technol, Dept Phys Elect, Meguro Ku, Tokyo 1528552, Japan
关键词
Physical vapor deposition processes; Semiconducting quarternary alloys; Solar cells; HIGH-EFFICIENCY;
D O I
10.1016/j.jcrysgro.2008.09.091
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Cu(In1-xGax)Se-2 (CIGS) films have been grown by using cracked selenium. In conventional evaporation system, the Se atoms were supplied as large clusters (Se-x, x>5). However, the size of clusters can be reduced by the thermal cracking. The film qualities grown with small clusters (Se-x, x<4) would be improved, since the smaller size molecules easily react with elemental metals, resulting in the reduction of selenium vacancies and the enhancement of surface migration. The CIGS films were deposited by the three stage method with cracked selenium, and the films were evaluated by SEM, XRD, EDX, C-V measurement and admittance spectroscopy. It was found from the C-V characteristics that the carrier concentrations of the CIGS films grown with cracked selenium were increased with increasing the cracking temperature. The result clearly showed that the use of cracked selenium was effective for reduction of selenium vacancies. The conversion efficiency of 15.4% was obtained by using cracked selenium at a cracking temperature of 500 C. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:753 / 756
页数:4
相关论文
共 50 条
  • [11] Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance
    Rau, U
    Schmidt, M
    Jasenek, A
    Hanna, G
    Schock, HW
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 67 (1-4) : 137 - 143
  • [12] Recombination in Cu(In, Ga)Se2 thin-film solar cells containing ordered vacancy compound phases
    Cho, Yunae
    Kim, Dong-Wook
    Ahn, SeJin
    Nam, Dahyun
    Cheong, Hyeonsik
    Jeong, Guk Yeong
    Gwak, Jihye
    Yun, Jae Ho
    THIN SOLID FILMS, 2013, 546 : 358 - 361
  • [13] Interconnection between Trait, Structure, and Composition of Grain Boundaries in Cu(In,Ga)Se2 Thin-Film Solar Cells
    Raghuwanshi, Mohit
    Wuerz, Roland
    Cojocaru-Miredin, Oana
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (31)
  • [14] Fabrication methods for performance improvement of Cu(In, Ga) Se2 thin film solar cells
    Choi, P. H.
    Baek, D. H.
    Kim, H. J.
    Kim, K. S.
    Park, H. S.
    Kim, S. S.
    Choi, B. D.
    ELECTRONICS LETTERS, 2013, 49 (24) : 1561 - +
  • [15] Microstructural Characterization of Sulfurization Effects in Cu(In,Ga)Se2 Thin Film Solar Cells
    Aboulfadl, Hisham
    Keller, Jan
    Larsen, Jes
    Thuvander, Mattias
    Riekehr, Lars
    Edoff, Marika
    Platzer-Bjorkman, Charlotte
    MICROSCOPY AND MICROANALYSIS, 2019, 25 (02) : 532 - 538
  • [16] Optimized laser patterning for high performance Cu(In,Ga)Se2 thin-film solar modules
    Burn, Andreas
    Muralt, Martin
    Witte, Reiner
    Buecheler, Stephan
    Nishiwaki, Shiro
    Krainer, Lukas
    Spuehler, Gabriel J.
    Romano, Valerio
    LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING (LAMOM) XIX, 2014, 8967
  • [17] What is the dopant concentration in polycrystalline thin-film Cu(In,Ga)Se2?
    Werner, F.
    Bertram, T.
    Mengozzi, J.
    Siebentritt, S.
    THIN SOLID FILMS, 2017, 633 : 222 - 226
  • [18] Rubidium Fluoride Post-Deposition Treatment: Impact on the Chemical Structure of the Cu(In,Ga)Se2 Surface and CdS/Cu(In,Ga)Se2 Interface in Thin-Film Solar Cells
    Kreikemeyer-Lorenzo, Dagmar
    Hauschild, Dirk
    Jackson, Philip
    Friedlmeier, Theresa M.
    Hariskos, Dimitrios
    Blum, Monika
    Yang, Wanli
    Reinert, Friedrich
    Powalla, Michael
    Heske, Clemens
    Weinhardt, Lothar
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (43) : 37602 - 37608
  • [19] Grain boundaries in Cu(In, Ga)(Se, S)2 thin-film solar cells
    Rau, Uwe
    Taretto, Kurt
    Siebentritt, Susanne
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 96 (01): : 221 - 234
  • [20] Effects of Cu(In,Ga)3Se5 defect phase layer in Cu(In,Ga)Se2 thin film solar cells
    Namnuan, B.
    Amornkitbamrung, V
    Chatraphorn, S.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 800 (305-313) : 305 - 313