Cu(In,Ga)Se2 thin-film solar cells grown with cracked selenium

被引:15
|
作者
Kawamura, Masahiro [1 ]
Fujita, Toshiyuki [1 ]
Yamada, Akira [1 ]
Konagai, Makoto [1 ]
机构
[1] Tokyo Inst Technol, Dept Phys Elect, Meguro Ku, Tokyo 1528552, Japan
关键词
Physical vapor deposition processes; Semiconducting quarternary alloys; Solar cells; HIGH-EFFICIENCY;
D O I
10.1016/j.jcrysgro.2008.09.091
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Cu(In1-xGax)Se-2 (CIGS) films have been grown by using cracked selenium. In conventional evaporation system, the Se atoms were supplied as large clusters (Se-x, x>5). However, the size of clusters can be reduced by the thermal cracking. The film qualities grown with small clusters (Se-x, x<4) would be improved, since the smaller size molecules easily react with elemental metals, resulting in the reduction of selenium vacancies and the enhancement of surface migration. The CIGS films were deposited by the three stage method with cracked selenium, and the films were evaluated by SEM, XRD, EDX, C-V measurement and admittance spectroscopy. It was found from the C-V characteristics that the carrier concentrations of the CIGS films grown with cracked selenium were increased with increasing the cracking temperature. The result clearly showed that the use of cracked selenium was effective for reduction of selenium vacancies. The conversion efficiency of 15.4% was obtained by using cracked selenium at a cracking temperature of 500 C. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:753 / 756
页数:4
相关论文
共 50 条
  • [1] Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells
    Romeo, A
    Terheggen, A
    Abou-Ras, D
    Bätzner, DL
    Haug, FJ
    Kälin, M
    Rudmann, D
    Tiwari, AN
    PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3): : 93 - 111
  • [2] Fabrication of Cu(InGa)Se2 Thin-Film Solar Cells Grown with Ionized Ga Source
    Nakashiba, Tetusya
    Yamada, Akira
    Zhang, Li
    Konagai, Makoto
    COMMAD: 2008 CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC MATERIALS & DEVICES, 2008, : 281 - 284
  • [3] Cu(In, Ga)Se2 thin film solar cells grown at low temperatures
    Zhang, W.
    Zhu, H.
    Zhang, L.
    Guo, Y.
    Niu, X.
    Li, Z.
    Chen, J.
    Liu, Q.
    Mai, Y.
    SOLID-STATE ELECTRONICS, 2017, 132 : 57 - 63
  • [4] The characteristics of Cu(In, Ga)Se2 thin-film solar cells by bandgap grading
    Kim, Young-Ill
    Yang, Kee-Jeong
    Kim, Se-Yun
    Kang, Jin-Kyu
    Kim, Juran
    Jo, William
    Yoo, Hyesun
    Kim, JunHo
    Kim, Dae-Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2019, 76 : 437 - 442
  • [5] Fe diffusion in polycrystalline Cu(In,Ga)Se2 layers for thin-film solar cells
    Stolwijk, N. A.
    Obeidi, Sh.
    Bastek, J.
    Wuerz, R.
    Eicke, A.
    APPLIED PHYSICS LETTERS, 2010, 96 (24)
  • [6] Cu(In,Ga)Se2 Thin-Film Solar Cells and Modules-A Boost in Efficiency Due to Potassium
    Reinhard, Patrick
    Pianezzi, Fabian
    Bissig, Benjamin
    Chirila, Adrian
    Bloesch, Patrick
    Nishiwaki, Shiro
    Buecheler, Stephan
    Tiwari, Ayodhya N.
    IEEE JOURNAL OF PHOTOVOLTAICS, 2015, 5 (02): : 656 - 663
  • [7] Challenges in the deposition of (Ag,Cu)(In,Ga)Se2 absorber layers for thin-film solar cells
    Essig, Stephanie
    Paetel, Stefan
    Friedlmeier, Theresa Magorian
    Powalla, Michael
    JOURNAL OF PHYSICS-MATERIALS, 2021, 4 (02):
  • [8] Alternative sodium sources for Cu(In,Ga)Se2 thin-film solar cells on flexible substrates
    Wuerz, R.
    Eicke, A.
    Kessler, F.
    Rogin, P.
    Yazdani-Assl, O.
    THIN SOLID FILMS, 2011, 519 (21) : 7268 - 7271
  • [9] Exploiting the Optical Limits of Thin-Film Solar Cells: A Review on Light Management Strategies in Cu(In,Ga)Se2
    Oliveira, Antonio J. N.
    Teixeira, Jennifer P.
    Ramos, Duarte
    Fernandes, Paulo A.
    Salome, Pedro M. P.
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (06):
  • [10] Effect of Se/(Ga plus In) ratio on MBE grown Cu(In,Ga)Se2 thin film solar cell
    Islam, M. M.
    Sakurai, T.
    Ishizuka, S.
    Yamada, A.
    Shibata, H.
    Sakurai, K.
    Matsubara, K.
    Niki, S.
    Akimoto, K.
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) : 2212 - 2214