Prediction of breast cancer molecular subtypes using radiomics signatures of synthetic mammography from digital breast tomosynthesis

被引:52
作者
Son, Jinwoo [1 ,2 ]
Lee, Si Eun [1 ,2 ]
Kim, Eun-Kyung [1 ,2 ]
Kim, Sungwon [1 ,2 ]
机构
[1] Yonsei Univ, Coll Med, Severance Hosp, Dept Radiol,Res Inst Radiol Sci, 50-1 Yonsei Ro, Seoul 03722, South Korea
[2] Yonsei Univ, Coll Med, Severance Hosp, Ctr Clin Image Data Sci, 50-1 Yonsei Ro, Seoul 03722, South Korea
关键词
REGULARIZATION; RECURRENCE; STRATEGIES; PROGNOSIS; PATTERNS; SURVIVAL; THERAPY; IMPACT; IMAGES; WOMEN;
D O I
10.1038/s41598-020-78681-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We aimed to predict molecular subtypes of breast cancer using radiomics signatures extracted from synthetic mammography reconstructed from digital breast tomosynthesis (DBT). A total of 365 patients with invasive breast cancer with three different molecular subtypes (luminal A+B, luminal; HER2-positive, HER2; triple-negative, TN) were assigned to the training set and temporally independent validation cohort. A total of 129 radiomics features were extracted from synthetic mammograms. The radiomics signature was built using the elastic-net approach. Clinical features included patient age, lesion size and image features assessed by radiologists. In the validation cohort, the radiomics signature yielded an AUC of 0.838, 0.556, and 0.645 for the TN, HER2 and luminal subtypes, respectively. In a multivariate analysis, the radiomics signature was the only independent predictor of the molecular subtype. The combination of the radiomics signature and clinical features showed significantly higher AUC values than clinical features only for distinguishing the TN subtype. In conclusion, the radiomics signature showed high performance for distinguishing TN breast cancer. Radiomics signatures may serve as biomarkers for TN breast cancer and may help to determine the direction of treatment for these patients.
引用
收藏
页数:11
相关论文
共 44 条
[11]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[12]   Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011 [J].
Goldhirsch, A. ;
Wood, W. C. ;
Coates, A. S. ;
Gelber, R. D. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2011, 22 (08) :1736-1747
[13]  
Hammond MEH, 2010, ARCH PATHOL LAB MED, V134, P907, DOI [10.1200/JCO.2009.25.6529, 10.1043/1543-2165-134.7.e48, 10.5858/134.6.907, 10.1200/JOP.777003]
[14]   US Incidence of Breast Cancer Subtypes Defined by Joint Hormone Receptor and HER2 Status [J].
Howlader, Nadia ;
Altekruse, Sean F. ;
Li, Christopher I. ;
Chen, Vivien W. ;
Clarke, Christina A. ;
Ries, Lynn A. G. ;
Cronin, Kathleen A. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2014, 106 (05)
[15]   Breast Cancer Molecular Subtypes in Patients With Locally Advanced Disease: Impact on Prognosis, Patterns of Recurrence, and Response to Therapy [J].
Huber, Kathryn E. ;
Carey, Lisa A. ;
Wazer, David E. .
SEMINARS IN RADIATION ONCOLOGY, 2009, 19 (04) :204-210
[16]   Mammographic and ultrasonographic features of triple-negative breast cancer: a comparison with other breast cancer subtypes [J].
Kim, Mi Young ;
Choi, Nami .
ACTA RADIOLOGICA, 2013, 54 (08) :889-894
[17]   Triple-negative breast cancer: correlation between imaging and pathological findings [J].
Ko, Eun Sook ;
Lee, Byung Hee ;
Kim, Hyun-A ;
Noh, Woo-Chul ;
Kim, Min Suk ;
Lee, Sang-Ah .
EUROPEAN RADIOLOGY, 2010, 20 (05) :1111-1117
[18]   Breast cancer classification by proteomic technologies: Current state of knowledge [J].
Lam, S. W. ;
Jimenez, C. R. ;
Boven, E. .
CANCER TREATMENT REVIEWS, 2014, 40 (01) :129-138
[19]   Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set [J].
Li H. ;
Zhu Y. ;
Burnside E.S. ;
Huang E. ;
Drukker K. ;
Hoadley K.A. ;
Fan C. ;
Conzen S.D. ;
Zuley M. ;
Net J.M. ;
Sutton E. ;
Whitman G.J. ;
Morris E. ;
Perou C.M. ;
Ji Y. ;
Giger M.L. .
npj Breast Cancer, 2 (1)
[20]   Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer [J].
Liedtke, Cornelia ;
Mazouni, Chafika ;
Hess, Kenneth R. ;
Andre, Fabrice ;
Tordai, Attila ;
Mejia, Jaime A. ;
Symmans, W. Fraser ;
Gonzalez-Angulo, Ana M. ;
Hennessy, Bryan ;
Green, Marjorie ;
Cristofanilli, Massimo ;
Hortobagyi, Gabriel N. ;
Pusztai, Lajos .
JOURNAL OF CLINICAL ONCOLOGY, 2008, 26 (08) :1275-1281