Prediction of breast cancer molecular subtypes using radiomics signatures of synthetic mammography from digital breast tomosynthesis

被引:52
作者
Son, Jinwoo [1 ,2 ]
Lee, Si Eun [1 ,2 ]
Kim, Eun-Kyung [1 ,2 ]
Kim, Sungwon [1 ,2 ]
机构
[1] Yonsei Univ, Coll Med, Severance Hosp, Dept Radiol,Res Inst Radiol Sci, 50-1 Yonsei Ro, Seoul 03722, South Korea
[2] Yonsei Univ, Coll Med, Severance Hosp, Ctr Clin Image Data Sci, 50-1 Yonsei Ro, Seoul 03722, South Korea
关键词
REGULARIZATION; RECURRENCE; STRATEGIES; PROGNOSIS; PATTERNS; SURVIVAL; THERAPY; IMPACT; IMAGES; WOMEN;
D O I
10.1038/s41598-020-78681-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We aimed to predict molecular subtypes of breast cancer using radiomics signatures extracted from synthetic mammography reconstructed from digital breast tomosynthesis (DBT). A total of 365 patients with invasive breast cancer with three different molecular subtypes (luminal A+B, luminal; HER2-positive, HER2; triple-negative, TN) were assigned to the training set and temporally independent validation cohort. A total of 129 radiomics features were extracted from synthetic mammograms. The radiomics signature was built using the elastic-net approach. Clinical features included patient age, lesion size and image features assessed by radiologists. In the validation cohort, the radiomics signature yielded an AUC of 0.838, 0.556, and 0.645 for the TN, HER2 and luminal subtypes, respectively. In a multivariate analysis, the radiomics signature was the only independent predictor of the molecular subtype. The combination of the radiomics signature and clinical features showed significantly higher AUC values than clinical features only for distinguishing the TN subtype. In conclusion, the radiomics signature showed high performance for distinguishing TN breast cancer. Radiomics signatures may serve as biomarkers for TN breast cancer and may help to determine the direction of treatment for these patients.
引用
收藏
页数:11
相关论文
共 44 条
[1]  
[Anonymous], 2014, ACR BI-RADS Atlas: Breast Imaging Reporting and Data System
[2]   Breast cancer screening with tomosynthesis (3D mammography) with acquired or synthetic 2D mammography compared with 2D mammography alone (STORM-2): a population-based prospective study [J].
Bernardi, Daniela ;
Macaskill, Petra ;
Pellegrini, Marco ;
Valentini, Marvi ;
Fanto, Carmine ;
Ostillio, Livio ;
Tuttobene, Paolina ;
Luparia, Andrea ;
Houssami, Nehmat .
LANCET ONCOLOGY, 2016, 17 (08) :1105-1113
[3]   SMOTE for high-dimensional class-imbalanced data [J].
Blagus, Rok ;
Lusa, Lara .
BMC BIOINFORMATICS, 2013, 14
[4]  
Boisserie-Lacroix M, 2013, Diagn Interv Imaging, V94, P1069, DOI 10.1016/j.diii.2013.04.010
[5]   Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study [J].
Carey, Lisa A. ;
Perou, Charles M. ;
Livasy, Chad A. ;
Dressler, Lynn G. ;
Cowan, David ;
Conway, Kathleen ;
Karaca, Gamze ;
Troester, Melissa A. ;
Tse, Chiu Kit ;
Edmiston, Sharon ;
Deming, Sandra L. ;
Geradts, Joseph ;
Cheang, Maggie C. U. ;
Nielsen, Torsten O. ;
Moorman, Patricia G. ;
Earp, H. Shelton ;
Millikan, Robert C. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2006, 295 (21) :2492-2502
[6]   The role of ultrasonographic findings to predict molecular subtype, histologic grade, and hormone receptor status of breast cancer [J].
Celebi, Filiz ;
Pilanci, Kezban Nur ;
Ordu, Cetin ;
Agacayak, Filiz ;
Alco, Gul ;
Ilgun, Serkan ;
Sarsenov, Dauren ;
Erdogan, Zeynep ;
Ozmen, Vahit .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2015, 21 (06) :448-453
[7]   SMOTE: Synthetic minority over-sampling technique [J].
Chawla, Nitesh V. ;
Bowyer, Kevin W. ;
Hall, Lawrence O. ;
Kegelmeyer, W. Philip .
2002, American Association for Artificial Intelligence (16)
[8]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1111/eci.12376, 10.7326/M14-0698, 10.1038/bjc.2014.639, 10.1186/s12916-014-0241-z, 10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.1016/j.eururo.2014.11.025, 10.1136/bmj.g7594, 10.1002/bjs.9736]
[9]   Triple-Negative Breast Cancer [J].
Foulkes, William D. ;
Smith, Ian E. ;
Reis-Filho, Jorge S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (20) :1938-1948
[10]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22