DIFFUSIVE LIMIT TO A SELECTION-MUTATION EQUATION WITH SMALL MUTATION FORMULATED ON THE SPACE OF MEASURES

被引:4
作者
Ackleh, Azmy S. [1 ]
Saintier, Nicolas [2 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Univ Buenos Aires, Dept Matemat, Fac Ciencias Exactas & Nat, 1428 Pabellon 1 Ciudad Univ, Buenos Aires, DF, Argentina
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2021年 / 26卷 / 03期
关键词
Selection-mutation equation; small mutation diffusive limit; nonlinear first-order hyperbolic equation on the space of measures; STEADY-STATES; DISTRIBUTIONS; EVOLUTION; DYNAMICS; MODEL;
D O I
10.3934/dcdsb.2020169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a selection-mutation model with an advection term formulated on the space of finite signed measures on R-d. The selection-mutation kernel is described by a family of measures which allows the study of continuous and discrete kernels under the same setting. We rescale the selection-mutation kernel to obtain a diffusively rescaled selection-mutation model. We prove that if the rescaled selection-mutation kernel converges to a pure selection kernel then the solution of the diffusively rescaled model converges to a solution of an advection-diffusion equation.
引用
收藏
页码:1469 / 1497
页数:29
相关论文
共 29 条
[11]   Steady states of a selection-mutation model for an age structured population [J].
Calsina, Angel ;
Palmada, Josep M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) :386-395
[12]   A WELL-POSEDNESS THEORY IN MEASURES FOR SOME KINETIC MODELS OF COLLECTIVE MOTION [J].
Canizo, J. A. ;
Carrillo, J. A. ;
Rosado, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (03) :515-539
[13]   Measure Solutions for Some Models in Population Dynamics [J].
Canizo, Jose A. ;
Carrillo, Jose A. ;
Cuadrado, Silvia .
ACTA APPLICANDAE MATHEMATICAE, 2013, 123 (01) :141-156
[14]   Unifying evolutionary dynamics:: From individual stochastic processes to macroscopic models [J].
Champagnat, N ;
Ferrière, R ;
Méléard, S .
THEORETICAL POPULATION BIOLOGY, 2006, 69 (03) :297-321
[15]   Cell population heterogeneity and evolution towards drug resistance in cancer: Biological and mathematical assessment, theoretical treatment optimisation [J].
Chisholm, Rebecca H. ;
Lorenzi, Tommaso ;
Clairambault, Jean .
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2016, 1860 (11) :2627-2645
[16]   Evolutionary game theory on measure spaces: Well-posedness [J].
Cleveland, John ;
Ackleh, Azmy S. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :785-797
[17]   Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics [J].
Cressman, R ;
Hofbauer, J .
THEORETICAL POPULATION BIOLOGY, 2005, 67 (01) :47-59
[18]   CONVERGENCE OF BAIRE MEASURES [J].
DUDLEY, RM .
STUDIA MATHEMATICA, 1966, 27 (03) :251-&
[19]   Mild solutions to a measure-valued mass evolution problem with flux boundary conditions [J].
Evers, Joep H. M. ;
Hille, Sander C. ;
Muntean, Adrian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (03) :1068-1097
[20]   METRICS FOR PROBABILITY-DISTRIBUTIONS AND THE TREND TO EQUILIBRIUM FOR SOLUTIONS OF THE BOLTZMANN-EQUATION [J].
GABETTA, G ;
TOSCANI, G ;
WENNBERG, B .
JOURNAL OF STATISTICAL PHYSICS, 1995, 81 (5-6) :901-934