DIFFUSIVE LIMIT TO A SELECTION-MUTATION EQUATION WITH SMALL MUTATION FORMULATED ON THE SPACE OF MEASURES

被引:4
作者
Ackleh, Azmy S. [1 ]
Saintier, Nicolas [2 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Univ Buenos Aires, Dept Matemat, Fac Ciencias Exactas & Nat, 1428 Pabellon 1 Ciudad Univ, Buenos Aires, DF, Argentina
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2021年 / 26卷 / 03期
关键词
Selection-mutation equation; small mutation diffusive limit; nonlinear first-order hyperbolic equation on the space of measures; STEADY-STATES; DISTRIBUTIONS; EVOLUTION; DYNAMICS; MODEL;
D O I
10.3934/dcdsb.2020169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a selection-mutation model with an advection term formulated on the space of finite signed measures on R-d. The selection-mutation kernel is described by a family of measures which allows the study of continuous and discrete kernels under the same setting. We rescale the selection-mutation kernel to obtain a diffusively rescaled selection-mutation model. We prove that if the rescaled selection-mutation kernel converges to a pure selection kernel then the solution of the diffusively rescaled model converges to a solution of an advection-diffusion equation.
引用
收藏
页码:1469 / 1497
页数:29
相关论文
共 29 条
[1]  
Ackleh A. S., J MATH ANAL APPL
[2]  
Ackleh AS, 2005, DISCRETE CONT DYN-B, V5, P917
[3]   Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces [J].
Ackleh, Azmy S. ;
Cleveland, John ;
Thieme, Horst R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) :1472-1505
[4]  
Ackleh Azmy S., 2011, Journal of Biological Dynamics, V5, P436, DOI 10.1080/17513758.2010.538729
[5]  
Almeida L., 2018, TRENDS BIOMATH MODEL, P107, DOI 10.1007/978-3-319-91092-5_8
[6]  
Billingsley P., 2013, Convergence of Probability Measures
[7]   Stationary distributions under mutation-selection balance: Structure and properties [J].
Burger, R ;
Bomze, IM .
ADVANCES IN APPLIED PROBABILITY, 1996, 28 (01) :227-251
[8]   Small mutation rate and evolutionarily stable strategies in infinite dimensional adaptive dynamics [J].
Calsina, A ;
Cuadrado, S .
JOURNAL OF MATHEMATICAL BIOLOGY, 2004, 48 (02) :135-159
[9]   Asymptotic profile in selection-mutation equations: Gauss versus Cauchy distributions [J].
Calsina, Angel ;
Cuadrado, Silvia ;
Desvillettes, Laurent ;
Raoul, Gael .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) :1515-1541
[10]   Asymptotics of steady states of a selection-mutation equation for small mutation rate [J].
Calsina, Angel ;
Cuadrado, Silvia ;
Desvillettes, Laurent ;
Raoul, Gael .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2013, 143 (06) :1123-1146