Sparsity Invariance for Convex Design of Distributed Controllers

被引:24
作者
Furieri, Luca [1 ]
Zheng, Yang [2 ]
Papachristodoulou, Antonis [3 ]
Kamgarpour, Maryam [1 ]
机构
[1] Swiss Fed Inst Technol, Dept Informat Technol & Elect Engn, Automat Control Lab, CH-8092 Zurich, Switzerland
[2] Harvard Univ, Harvard Ctr Green Bldg & Cities, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Univ Oxford, Dept Engn Sci, Oxford OX1 2JD, England
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2020年 / 7卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
Decentralized control; linear systems; networked control systems; optimal control; quadratic invariance; SYSTEMS; YOULA;
D O I
10.1109/TCNS.2020.3002429
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the problem of designing optimal linear time-invariant (LTI) sparse controllers for LTI systems, which corresponds to minimizing a norm of the closed-loop system subjected to sparsity constraints on the controller structure. This problem is NP-hard in general and motivates the development of tractable approximations. We characterize a class of convex restrictions based on a new notion of sparsity invariance (SI). The underlying idea of SI is to design sparsity patterns for transfer matrices Y(s) and X(s) such that any corresponding controller K(s) = Y(s)X(s)(-1) exhibits the desired sparsity pattern. For sparsity constraints, the approach of SI goes beyond the notion of quadratic invariance (QI): 1) the SI approach always yields a convex restriction and 2) the solution via the SI approach is guaranteed to be globally optimal when QI holds and performs at least, considering the nearest QI subset. Moreover, the notion of SI naturally applies to designing structured static controllers, while QI is not utilizable. Numerical examples show that even for non-QI cases, SI can recover solutions that are: 1) globally optimal and 2) strictly more performing than previous methods.
引用
收藏
页码:1836 / 1847
页数:12
相关论文
共 39 条
[1]  
Alavian A., 2013, IFAC Proc., V46, P301
[2]  
Alavian A, 2014, IEEE DECIS CONTR P, P4032, DOI 10.1109/CDC.2014.7040016
[3]  
[Anonymous], 2017, ARXIV170900695
[4]   A survey of computational complexity results in systems and control [J].
Blondel, VD ;
Tsitsiklis, JN .
AUTOMATICA, 2000, 36 (09) :1249-1274
[5]  
Boy S., 1994, LINEAR MATRIX INEQUA
[6]  
Boyd S., 1991, LINEAR CONTROLLER DE
[7]  
Conte C, 2012, P AMER CONTR CONF, P6017
[8]  
Dhingra NK, 2014, IEEE DECIS CONTR P, P4039, DOI 10.1109/CDC.2014.7040017
[9]   Sparsity-Promoting Optimal Wide-Area Control of Power Networks [J].
Doerfler, Florian ;
Jovanovic, Mihailo R. ;
Chertkov, Michael ;
Bullo, Francesco .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (05) :2281-2291
[10]   Convex Structured Controller Design in Finite Horizon [J].
Dvijotham, Krishnamurthy ;
Todorov, Emanuel ;
Fazel, Maryam .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2015, 2 (01) :1-10