Continuous finite-time control for uncertain robot manipulators with integral sliding mode

被引:96
作者
Zhang, Liyin [1 ]
Liu, Linzhi [2 ]
Wang, Zeng [1 ]
Xia, Yuquan [1 ]
机构
[1] Xidian Univ, Sch Electromech Engn, 2 South Taibai Rd, Xian, Shaanxi, Peoples R China
[2] CSIC Xian Dong Yi Sci Technol & Ind Grp Co Ltd, 3 Dongyi Rd, Xian, Shaanxi, Peoples R China
关键词
Lyapunov methods; variable structure systems; control system synthesis; manipulators; uncertain systems; stability; uncertain robot manipulators; continuous sliding mode tracking problem; parametric uncertainty; external disturbances; chattering-free integral terminal; integral terminal sliding surface; global finite-time tracking; robotic system; continuous sliding mode control; Lypaunov stability theory; high-steady-state tracking precision; continuous finite-time control; MECHANICAL SYSTEMS; TRACKING CONTROL; ORDER; HOMOGENEITY; ALGORITHM;
D O I
10.1049/iet-cta.2017.1361
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study investigates a continuous sliding mode tracking problem for robot manipulators under the presence of parametric uncertainty and external disturbances. A chattering-free integral terminal sliding mode control scheme is first proposed by integrating an integral terminal sliding surface with an observer. Lypaunov stability theory is employed to prove the global finite-time tracking of robotic system. The appealing advantages of the proposed controller are that it is easy to implement with the continuous sliding mode control featuring chattering-free, fast transient and high steady-state tracking precision. Extensive simulations on two degree of freedoms (DOFs) are presented to demonstrate the effectiveness and improved performance of the proposed approach.
引用
收藏
页码:1621 / 1627
页数:7
相关论文
共 33 条
[1]  
[Anonymous], 1999, Sliding mode control in electromechanical systems
[2]   A survey of applications of second-order sliding mode control to mechanical systems [J].
Bartolini, G ;
Pisano, A ;
Punta, E ;
Usai, E .
INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (9-10) :875-892
[3]   Continuous finite-time stabilization of the translational and rotational double integrators [J].
Bhat, SP ;
Bernstein, DS .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (05) :678-682
[4]   Geometric homogeneity with applications to finite-time stability [J].
Bhat, SP ;
Bernstein, DS .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) :101-127
[5]   Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches [J].
Chalanga, Asif ;
Kamal, Shyam ;
Fridman, Leonid M. ;
Bandyopadhyay, Bijnan ;
Moreno, Jaime A. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (06) :3677-3685
[6]   Second-order sliding-mode observer for mechanical systems [J].
Davila, J ;
Fridman, L ;
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1785-1789
[7]   Non-singular terminal sliding mode control of rigid manipulators [J].
Feng, Y ;
Yu, XH ;
Man, ZH .
AUTOMATICA, 2002, 38 (12) :2159-2167
[8]   Chattering free full-order sliding-mode control [J].
Feng, Yong ;
Han, Fengling ;
Yu, Xinghuo .
AUTOMATICA, 2014, 50 (04) :1310-1314
[9]   Second-order sliding-mode control of a mobile robot based on a harmonic potential field [J].
Ferrara, A. ;
Rubagotti, M. .
IET CONTROL THEORY AND APPLICATIONS, 2008, 2 (09) :807-818
[10]   Finite-time trajectory tracking control in a task space of robotic manipulators [J].
Galicki, Miroslaw .
AUTOMATICA, 2016, 67 :165-170