Disentangling Genetic Risks for Metabolic Syndrome

被引:31
作者
van Walree, Eva S. [1 ,2 ]
Jansen, Iris E. [2 ]
Bell, Nathaniel Y. [2 ]
Savage, Jeanne E. [2 ]
de Leeuw, Christiaan [2 ]
Nieuwdorp, Max [3 ]
van der Sluis, Sophie [4 ]
Posthuma, Danielle [2 ,4 ]
机构
[1] Univ Amsterdam, Amsterdam UMC, Dept Clin Genet, Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Amsterdam Neurosci, Ctr Neurogen & Cognit Res, Dept Complex Trait Genet, Amsterdam, Netherlands
[3] Univ Amsterdam, Amsterdam UMC, Dept Internal & Vasc Med, Amsterdam, Netherlands
[4] Vrije Univ Amsterdam, Amsterdam Neurosci, Sect Complex Trait Genet, Dept Child & Adolescent Psychol & Psychiat,Med Ct, Amsterdam, Netherlands
关键词
CARDIOVASCULAR-DISEASE; GLUCOSE-HOMEOSTASIS; FENOFIBRATE; PREVALENCE; OBESITY; CHOLESTEROL; MECHANISMS; MORTALITY; HEALTH; IMPACT;
D O I
10.2337/db22-0478
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A quarter of the world's population is estimated to meet the criteria for metabolic syndrome (MetS), a cluster of cardiometabolic risk factors that promote development of coronary artery disease and type 2 diabetes, leading to increased risk of premature death and significant health costs. In this study we investigate whether the genetics associated with MetS components mirror their phenotypic clustering. A multivariate approach that leverages genetic correlations of fasting glucose, HDL cholesterol, systolic blood pressure, triglycerides, and waist circumference was used, which revealed that these genetic correlations are best captured by a genetic one factor model. The common genetic factor genome-wide association study (GWAS) detects 235 associated loci, 174more than the largest GWAS onMetS to date. Of these loci, 53 (22.5%) overlap with loci identified for two ormore MetS components, indicating thatMetS is a complex, heterogeneous disorder. Associated loci harbor genes that show increased expression in the brain, especially in GABAergic and dopaminergic neurons. A polygenic risk score drafted from the MetS factor GWAS predicts 5.9% of the variance inMetS. These results provide mechanistic insights into the genetics of MetS and suggestions for drug targets, especially fenofibrate, which has the promise of tackling multiple MetS components.
引用
收藏
页码:2447 / 2457
页数:11
相关论文
共 55 条
  • [1] Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity
    Akbari, Parsa
    Gilani, Ankit
    Sosina, Olukayode
    Kosmicki, Jack A.
    Khrimian, Lori
    Fang, Yi-Ya
    Persaud, Trikaldarshi
    Garcia, Victor
    Sun, Dylan
    Li, Alexander
    Mbatchou, Joelle
    Locke, Adam E.
    Benner, Christian
    Verweij, Niek
    Lin, Nan
    Hossain, Sakib
    Agostinucci, Kevin
    Pascale, Jonathan, V
    Dirice, Ercument
    Dunn, Michael
    Kraus, William E.
    Shah, Svati H.
    Chen, Yii-Der, I
    Rotter, Jerome, I
    Rader, Daniel J.
    Melander, Olle
    Still, Christopher D.
    Mirshahi, Tooraj
    Carey, David J.
    Berumen-Campos, Jaime
    Kuri-Morales, Pablo
    Alegre-Diaz, Jesus
    Torres, Jason M.
    Emberson, Jonathan R.
    Collins, Rory
    Balasubramanian, Suganthi
    Hawes, Alicia
    Jones, Marcus
    Zambrowicz, Brian
    Murphy, Andrew J.
    Paulding, Charles
    Coppola, Giovanni
    Overton, John D.
    Reid, Jeffrey G.
    Shuldiner, Alan R.
    Cantor, Michael
    Kang, Hyun M.
    Abecasis, Goncalo R.
    Karalis, Katia
    Economides, Aris N.
    [J]. SCIENCE, 2021, 373 (6550)
  • [2] Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity
    Alberti, K. G. M. M.
    Eckel, Robert H.
    Grundy, Scott M.
    Zimmet, Paul Z.
    Cleeman, James I.
    Donato, Karen A.
    Fruchart, Jean-Charles
    James, W. Philip T.
    Loria, Catherine M.
    Smith, Sidney C., Jr.
    [J]. CIRCULATION, 2009, 120 (16) : 1640 - 1645
  • [3] A global reference for human genetic variation
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Wang, Jun
    Wilson, Richard K.
    Boerwinkle, Eric
    Doddapaneni, Harsha
    Han, Yi
    Korchina, Viktoriya
    Kovar, Christie
    Lee, Sandra
    Muzny, Donna
    Reid, Jeffrey G.
    Zhu, Yiming
    Chang, Yuqi
    Feng, Qiang
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Lan, Tianming
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Liu, Shengmao
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Tang, Meifang
    Wang, Bo
    [J]. NATURE, 2015, 526 (7571) : 68 - +
  • [4] ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity
    Babashamsi, Mohammad Mahdi
    Koukhaloo, Saeideh Zamani
    Halalkhor, Sohrab
    Salimi, Ali
    Babashamsi, Mohammad
    [J]. DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2019, 13 (02) : 1529 - 1534
  • [5] Bell N, 2022, MEDRXIV
  • [6] Structural equation modeling in medical research: A primer
    Beran T.N.
    Violato C.
    [J]. BMC Research Notes, 3 (1)
  • [7] LD Score regression distinguishes confounding from polygenicity in genome-wide association studies
    Bulik-Sullivan, Brendan K.
    Loh, Po-Ru
    Finucane, Hilary K.
    Ripke, Stephan
    Yang, Jian
    Patterson, Nick
    Daly, Mark J.
    Price, Alkes L.
    Neale, Benjamin M.
    [J]. NATURE GENETICS, 2015, 47 (03) : 291 - +
  • [8] Choi SB, 2021, BIORXIV
  • [9] PRSice-2: Polygenic Risk Score software for biobank-scale data
    Choi, Shing Wan
    O'Reilly, Paul F.
    [J]. GIGASCIENCE, 2019, 8 (07):
  • [10] Executive summary of the Third Report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III)
    Cleeman, JI
    Grundy, SM
    Becker, D
    Clark, LT
    Cooper, RS
    Denke, MA
    Howard, WJ
    Hunninghake, DB
    Illingworth, DR
    Luepker, RV
    McBride, P
    McKenney, JM
    Pasternak, RC
    Stone, NJ
    Van Horn, L
    Brewer, HB
    Ernst, ND
    Gordon, D
    Levy, D
    Rifkind, B
    Rossouw, JE
    Savage, P
    Haffner, SM
    Orloff, DG
    Proschan, MA
    Schwartz, JS
    Sempos, CT
    Shero, ST
    Murray, EZ
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2001, 285 (19): : 2486 - 2497