Disentangling Genetic Risks for Metabolic Syndrome

被引:41
作者
van Walree, Eva S. [1 ,2 ]
Jansen, Iris E. [2 ]
Bell, Nathaniel Y. [2 ]
Savage, Jeanne E. [2 ]
de Leeuw, Christiaan [2 ]
Nieuwdorp, Max [3 ]
van der Sluis, Sophie [4 ]
Posthuma, Danielle [2 ,4 ]
机构
[1] Univ Amsterdam, Amsterdam UMC, Dept Clin Genet, Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Amsterdam Neurosci, Ctr Neurogen & Cognit Res, Dept Complex Trait Genet, Amsterdam, Netherlands
[3] Univ Amsterdam, Amsterdam UMC, Dept Internal & Vasc Med, Amsterdam, Netherlands
[4] Vrije Univ Amsterdam, Amsterdam Neurosci, Sect Complex Trait Genet, Dept Child & Adolescent Psychol & Psychiat,Med Ct, Amsterdam, Netherlands
关键词
CARDIOVASCULAR-DISEASE; GLUCOSE-HOMEOSTASIS; FENOFIBRATE; PREVALENCE; OBESITY; CHOLESTEROL; MECHANISMS; MORTALITY; HEALTH; IMPACT;
D O I
10.2337/db22-0478
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A quarter of the world's population is estimated to meet the criteria for metabolic syndrome (MetS), a cluster of cardiometabolic risk factors that promote development of coronary artery disease and type 2 diabetes, leading to increased risk of premature death and significant health costs. In this study we investigate whether the genetics associated with MetS components mirror their phenotypic clustering. A multivariate approach that leverages genetic correlations of fasting glucose, HDL cholesterol, systolic blood pressure, triglycerides, and waist circumference was used, which revealed that these genetic correlations are best captured by a genetic one factor model. The common genetic factor genome-wide association study (GWAS) detects 235 associated loci, 174more than the largest GWAS onMetS to date. Of these loci, 53 (22.5%) overlap with loci identified for two ormore MetS components, indicating thatMetS is a complex, heterogeneous disorder. Associated loci harbor genes that show increased expression in the brain, especially in GABAergic and dopaminergic neurons. A polygenic risk score drafted from the MetS factor GWAS predicts 5.9% of the variance inMetS. These results provide mechanistic insights into the genetics of MetS and suggestions for drug targets, especially fenofibrate, which has the promise of tackling multiple MetS components.
引用
收藏
页码:2447 / 2457
页数:11
相关论文
共 55 条
[1]   Sequencing of 640,000 exomes identifies GPR75 variants associated with protection from obesity [J].
Akbari, Parsa ;
Gilani, Ankit ;
Sosina, Olukayode ;
Kosmicki, Jack A. ;
Khrimian, Lori ;
Fang, Yi-Ya ;
Persaud, Trikaldarshi ;
Garcia, Victor ;
Sun, Dylan ;
Li, Alexander ;
Mbatchou, Joelle ;
Locke, Adam E. ;
Benner, Christian ;
Verweij, Niek ;
Lin, Nan ;
Hossain, Sakib ;
Agostinucci, Kevin ;
Pascale, Jonathan, V ;
Dirice, Ercument ;
Dunn, Michael ;
Kraus, William E. ;
Shah, Svati H. ;
Chen, Yii-Der, I ;
Rotter, Jerome, I ;
Rader, Daniel J. ;
Melander, Olle ;
Still, Christopher D. ;
Mirshahi, Tooraj ;
Carey, David J. ;
Berumen-Campos, Jaime ;
Kuri-Morales, Pablo ;
Alegre-Diaz, Jesus ;
Torres, Jason M. ;
Emberson, Jonathan R. ;
Collins, Rory ;
Balasubramanian, Suganthi ;
Hawes, Alicia ;
Jones, Marcus ;
Zambrowicz, Brian ;
Murphy, Andrew J. ;
Paulding, Charles ;
Coppola, Giovanni ;
Overton, John D. ;
Reid, Jeffrey G. ;
Shuldiner, Alan R. ;
Cantor, Michael ;
Kang, Hyun M. ;
Abecasis, Goncalo R. ;
Karalis, Katia ;
Economides, Aris N. .
SCIENCE, 2021, 373 (6550)
[2]   Harmonizing the Metabolic Syndrome A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity [J].
Alberti, K. G. M. M. ;
Eckel, Robert H. ;
Grundy, Scott M. ;
Zimmet, Paul Z. ;
Cleeman, James I. ;
Donato, Karen A. ;
Fruchart, Jean-Charles ;
James, W. Philip T. ;
Loria, Catherine M. ;
Smith, Sidney C., Jr. .
CIRCULATION, 2009, 120 (16) :1640-1645
[3]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[4]  
[Anonymous], rms: Regression modeling strategies
[5]   ABCA1 and metabolic syndrome; a review of the ABCA1 role in HDL-VLDL production, insulin-glucose homeostasis, inflammation and obesity [J].
Babashamsi, Mohammad Mahdi ;
Koukhaloo, Saeideh Zamani ;
Halalkhor, Sohrab ;
Salimi, Ali ;
Babashamsi, Mohammad .
DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2019, 13 (02) :1529-1534
[6]  
Bell N, 2022, MEDRXIV
[7]   Structural equation modeling in medical research: A primer [J].
Beran T.N. ;
Violato C. .
BMC Research Notes, 3 (1)
[8]   LD Score regression distinguishes confounding from polygenicity in genome-wide association studies [J].
Bulik-Sullivan, Brendan K. ;
Loh, Po-Ru ;
Finucane, Hilary K. ;
Ripke, Stephan ;
Yang, Jian ;
Patterson, Nick ;
Daly, Mark J. ;
Price, Alkes L. ;
Neale, Benjamin M. .
NATURE GENETICS, 2015, 47 (03) :291-+
[9]  
Choi SB, 2021, BIORXIV
[10]   PRSice-2: Polygenic Risk Score software for biobank-scale data [J].
Choi, Shing Wan ;
O'Reilly, Paul F. .
GIGASCIENCE, 2019, 8 (07)