On monotone solutions and a self-adjoint spectral problem for a functional-differential equation of even order

被引:4
作者
Alves, Manuel Joaquim [1 ]
Labovskiy, Sergey M. [2 ]
机构
[1] Eduardo Mondlane Univ, Av Julius Nyerere,Campus 3453, Maputo, Mozambique
[2] Plekhanov Russian Univ Econ, 36 Stremyanny Lane, Moscow, Russia
关键词
quadratic functional; monotone solutions; spectrum; Jacobi condition;
D O I
10.14232/ejqtde.2019.1.59
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a self-adjoint boundary value problem for a functional-differential equation of even order, the basis property of the system of eigenfunctions and the equivalence of such statements as the positivity of the corresponding quadratic functional, the Jacobi condition and the positivity of the Green function are established.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 14 条
[1]  
Agarwal R.P., 1998, FOCAL BOUNDARY VALUE, DOI [10.1007/978-94-017-1568-3, DOI 10.1007/978-94-017-1568-3]
[2]  
[Anonymous], 1948, USP MAT NAUK
[3]  
Azbelev N., 1973, DIFF URAVN, V9, P1931
[4]  
Azbelev N. V., 2007, Introduction to the Theory of Functional Differential Equations: Methods and Applications, DOI [10.1155/9789775945495, DOI 10.1155/9789775945495]
[5]  
Birman M., 1987, Spectral theory of selfadjoint operators in Hilbert space, DOI [10.1007/978-94-009-4586-9, DOI 10.1007/978-94-009-4586-9]
[6]  
Cohn D.L., 2013, MEASURE THEORY, DOI DOI 10.1007/978-1-4614-6956-8
[7]  
de la Valle Poussin C, 1929, J MATH PURE APPL, V9, P125
[8]   POSITIVE CONES AND FOCAL POINTS FOR A CLASS OF NTH ORDER DIFFERENTIAL-EQUATIONS [J].
KEENER, MS ;
TRAVIS, CC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 237 (MAR) :331-351
[9]  
Kiguradze I. T., 1969, IZV AKAD NAUK SSSR M, V33, P1373
[10]  
KRASNOSELSKIJ M. A., 1989, POSITIVE LINEAR SYST