Adaptive Differential Evolution Algorithm with Multiple Gaussian Learning Models

被引:0
作者
Li, Genghui [1 ]
Li, Qingyan [1 ]
Wang, Zhenkun [1 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen 518055, Peoples R China
来源
ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III | 2022年 / 13606卷
基金
中国国家自然科学基金;
关键词
Differential evolution; Multiple Gaussian learning models; Numerical optimization; Parameter adaptation; Strategy adaptation; CROSSOVER RATE; OPTIMIZATION; STRATEGIES; PARAMETERS; ENSEMBLE;
D O I
10.1007/978-3-031-20503-3_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The search efficiency of the differential evolution (DE) algorithm significantly depends on its mutation strategies and control parameters. The multiple Gaussian learning model-based parameter adaptation mechanism is useful in choosing suitable parameters. Naturally, it is worth studying whether this mechanism is also beneficial for the automatic selection of the appropriate mutation strategies. To this end, this paper proposes an adaptive Differential Evolution algorithm with Multiple Gaussian Learning Models, known as MGLMDE, which includes two adaptation mechanisms, i.e., the multiple Gaussian learning model-based parameter adaptation mechanism (MGLMP) and multiple Gaussian learning model-based strategy adaptation mechanism (MGLMS). MGLMP and MGLMS determine the future mutation strategies and control parameters, respectively, using multiple Gaussian models to learn from successful historical memories. The linear population size reduction (LPSR) mechanism is used to control the population size. The proposed algorithm is evaluated via comparisons with some powerful DE methods on lots of test problems. The experimental results demonstrate that the proposed method is better than or at least highly competitive with the state-of-the-art DE algorithms.
引用
收藏
页码:325 / 336
页数:12
相关论文
共 34 条
[1]   KEEL: a software tool to assess evolutionary algorithms for data mining problems [J].
Alcala-Fdez, J. ;
Sanchez, L. ;
Garcia, S. ;
del Jesus, M. J. ;
Ventura, S. ;
Garrell, J. M. ;
Otero, J. ;
Romero, C. ;
Bacardit, J. ;
Rivas, V. M. ;
Fernandez, J. C. ;
Herrera, F. .
SOFT COMPUTING, 2009, 13 (03) :307-318
[2]   An Adaptive Multipopulation Differential Evolution With Dynamic Population Reduction [J].
Ali, Mostafa Z. ;
Awad, Noor H. ;
Suganthan, Ponnuthurai Nagaratnam ;
Reynolds, Robert G. .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (09) :2768-2779
[3]  
[Anonymous], 2013, RANKING RESULTS CEC1
[4]  
[Anonymous], 2014, RANKING RESULTS CEC1
[5]   A decremental stochastic fractal differential evolution for global numerical optimization [J].
Awad, Noor H. ;
Ali, Mostafa Z. ;
Suganthan, Ponnuthurai N. ;
Jaser, Edward .
INFORMATION SCIENCES, 2016, 372 :470-491
[6]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[7]  
Bujok P., 2016, MANUSCRIPT SUBMITTED
[8]   Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism [J].
Cui, Laizhong ;
Li, Genghui ;
Zhu, Zexuan ;
Lin, Qiuzhen ;
Wong, Ka-Chun ;
Chen, Jianyong ;
Lu, Nan ;
Lu, Jian .
INFORMATION SCIENCES, 2018, 422 :122-143
[9]   Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations [J].
Cui, Laizhong ;
Li, Genghui ;
Lin, Qiuzhen ;
Chen, Jianyong ;
Lu, Nan .
COMPUTERS & OPERATIONS RESEARCH, 2016, 67 :155-173
[10]   Differential Evolution With Event-Triggered Impulsive Control [J].
Du, Wei ;
Leung, Sunney Yung Sun ;
Tang, Yang ;
Vasilakos, Athanasios V. .
IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (01) :244-257