The gas-liquid two-phase flow in reciprocating enclosure with piston cooling gallery application

被引:14
|
作者
Wang, Peng [1 ,2 ]
Han, Kaihong [1 ]
Yoon, Sungmin [2 ]
Yu, Yuebin [2 ]
Liu, Mingsheng [1 ]
机构
[1] Dalian Univ Technol, Sch Civil Engn, Dalian, Peoples R China
[2] Univ Nebraska, Durham Sch Architectural Engn & Construct, Lincoln, NE 68588 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Gas-liquid two-phase flow; Piston cooling gallery; Interface motion; Reciprocating motion; Eulerian multiphase model; FLUID VOF METHOD; HEAT-TRANSFER; MOTION; NANOFLUIDS; CONVECTION; DYNAMICS; VOLUME; JET;
D O I
10.1016/j.ijthermalsci.2018.02.028
中图分类号
O414.1 [热力学];
学科分类号
摘要
With the specific power of diesel engines steadily advancing, heat removal from the piston has become a determining factor to ensure engine reliability and durability of engines. However, piston head complex structure makes it very difficult to accurately capture the flow and heat transfer processes of cooling engine oil within the piston gallery. The current study used high-speed photography to obtain periodic interface motions of gas and liquid phases under dynamic conditions, investigated the influences of engine speed and filling ratio on the interface motion, and derived the mechanism for heat transfer enhancement. Numerical simulations further explored turbulent mixing characteristics of gas-liquid mixture and reciprocating impinging effect on walls under various dynamic conditions. Coupled with a geometric reconstruction scheme, gas and liquid flow patterns were tracked by the Eulerian model, and then compared with results from VOF and CLSVOF models. A rough criterion was proposed to qualitatively estimate heat transfer enhancement of gas-liquid two-phase flow during periodic piston motion.
引用
收藏
页码:73 / 82
页数:10
相关论文
共 50 条
  • [31] Fundamental data on the gas-liquid two-phase flow in minichannels
    Ide, Hideo
    Kariyasaki, Akira
    Fukano, Tohru
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2007, 46 (06) : 519 - 530
  • [32] Entrainment phenomenon in gas-liquid two-phase flow: A review
    Bagul, R. K.
    Pilkhwal, D. S.
    Vijayan, P. K.
    Joshi, J. B.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2013, 38 (06): : 1173 - 1217
  • [33] Two-phase gas-liquid flow in horizontal corrugated channels
    Gradeck, M
    Lebouché, M
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2000, 26 (03) : 435 - 443
  • [34] Measurement of Gas-Liquid Two-Phase Flow in Draft Tube
    Li, Jinfeng
    Chen, Wuguang
    Zhang, Zhengchuan
    Xu, Yongliang
    Li, Kaiying
    Yin, Junlian
    Wang, Dezhong
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2024, 58 (08): : 1188 - 1200
  • [35] Gas-liquid two-phase flow measurement using ESM
    Dong, W
    Hu, LZ
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2002, 26 (6-7) : 827 - 832
  • [36] Gas-liquid two-phase flow in micro-channels
    Chen, WL
    Twu, MC
    Pan, C
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2002, 28 (07) : 1235 - 1247
  • [37] Scaling two-phase gas-liquid flow in horizontal pipes
    Tarahomi, Mohammad Amin
    Emamzadeh, Mohammad
    Ameri, Mohammad
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 200 : 592 - 601
  • [38] Gas-Liquid Two-Phase Flow Evolution in a Long Microchannel
    Ide, Hideo
    Kimura, Ryuji
    Kawaji, Masahiro
    HEAT TRANSFER ENGINEERING, 2013, 34 (2-3) : 151 - 158
  • [39] Modelling of EHD gas-liquid two-phase pipe flow
    Chang, JS
    ICDL 1996 - 12TH INTERNATIONAL CONFERENCE ON CONDUCTION AND BREAKDOWN IN DIELECTRIC LIQUIDS, 1996, : 468 - 471
  • [40] Wavelet Entropy Applied in Gas-liquid Two-phase Flow
    Fan Chunling
    Ding Yuhuan
    Ren Xia
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 8623 - 8627