Asymptotics for a nonlinear integral equation with a generalized heat kernel

被引:30
作者
Ishige, Kazuhiro [1 ]
Kawakami, Tatsuki [2 ]
Kobayashi, Kanako [1 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
[2] Osaka Prefecture Univ, Dept Math Sci, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
SEMILINEAR PARABOLIC EQUATIONS; LARGE TIME BEHAVIOR; GLOBAL-SOLUTIONS; INITIAL DATA; WHOLE SPACE; DIFFUSION-EQUATIONS; SUPERCRITICAL RANGE; SLOW DECAY; R-N; EXISTENCE;
D O I
10.1007/s00028-014-0237-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a nonlinear integral equation (P) u(x, t) = integral (N)(R) G(x - y, t) phi(y)dy + integral(t)(0) integral(N)(R) G(x - y, t - s)f(y, s : u)dyds, Where N >= 1, phi is an element of L-infinity (R-N) boolean AND L-1(R-N, (1+vertical bar x vertical bar(K))dx for some K >= 0. Hence, G = G(x, t) is phi a generalization of the heat kernel. We are interested in the asymptotic expansions of the solution of (P) behaving like a multiple of the integral kernel G as t -> infinity.
引用
收藏
页码:749 / 777
页数:29
相关论文
共 35 条
[1]  
[Anonymous], 1997, Acta Mathematica Universitatis Comenianae
[2]   Fractal Burgers equations [J].
Biler, P ;
Funaki, T ;
Woyczynski, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :9-46
[3]   Global and exploding solutions for nonlocal quadratic evolution problems [J].
Biler, P ;
Woyczynski, WA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (03) :845-869
[4]   Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data [J].
Caristi, G ;
Mitidieri, E .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (02) :710-722
[5]  
Carpio A., 1996, ANN SCUOLA NORM SU S, V23, P551
[6]  
Cui S, 2001, NONLINEAR ANAL-THEOR, V43, P293
[7]  
DOLBEAULT J., 2006, BANACH CTR PUBL, V74, P113
[8]   Large time behavior for convection-diffusion equations in RN with asymptotically constant diffusion [J].
Duro, G ;
Zuazua, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (7-8) :1283-1340
[9]  
Egorov YV, 2004, ADV DIFFERENTIAL EQU, V9, P1009
[10]   On the necessary conditions of global existence to a quasilinear inequality in the half-space [J].
Egorov, YV ;
Galakitionov, VA ;
Kondratiev, VA ;
Pohozaev, SI .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :93-98