Primes with an average sum of digits

被引:36
作者
Drmota, Michael [1 ]
Mauduit, Christian [2 ]
Rivat, Joel [2 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
[2] Univ Aix Marseille 2, Inst Math Luminy, CNRS, UMR 6206, F-13288 Marseille 9, France
关键词
sum-of-digits function; primes; exponential sums; central limit theorem; INTEGERS; NUMBERS; POWER;
D O I
10.1112/S0010437X08003898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to provide asymptotic expansions for the numbers # {p <= x : p prime, s(q) (p) = k} for k close to ((q - 1)/2) log(q) X, where s(q)(n) denotes the q-ary sum-of-digits function. The proof is based on a thorough analysis of exponential sums of the form Sigma(p <= x) e(alpha S(q)(p)) (where the sum is restricted to p prime), for which we have to extend a recent result by the second two authors.
引用
收藏
页码:271 / 292
页数:22
相关论文
共 23 条
  • [11] PRIME-NUMBERS IN SHORT INTERVALS AND A GENERALIZED VAUGHAN IDENTITY
    HEATHBROWN, DR
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (06): : 1365 - 1377
  • [12] HOHEISEL G, 1930, SITZ PREUSS AKAD WIS, V33, P3
  • [13] Iwaniec H., 2004, Amer. Math. Soc. Colloq. Publ., V53
  • [14] SUM OF DIGITS OF PRIMES
    KATAI, I
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 30 (1-2): : 169 - 173
  • [15] DISTRIBUTION OF DIGITS OF PRIMES IN Q-ARY CANONICAL FORM
    KATAI, I
    [J]. ACTA MATHEMATICA HUNGARICA, 1986, 47 (3-4) : 341 - 359
  • [16] KATAI I, 1967, ANN U SCI BUDAP, V10, P89
  • [17] Mauduit C, 1997, ACTA ARITH, V81, P145
  • [18] MAUDUIT C, ANN MATH IN PRESS
  • [19] MAUDUIT C, ACTA MATH IN PRESS
  • [20] SUM OF DIGITS OF PRIME NUMBERS
    SHIOKAWA, I
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (08): : 551 - 554