Primes with an average sum of digits

被引:38
作者
Drmota, Michael [1 ]
Mauduit, Christian [2 ]
Rivat, Joel [2 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
[2] Univ Aix Marseille 2, Inst Math Luminy, CNRS, UMR 6206, F-13288 Marseille 9, France
关键词
sum-of-digits function; primes; exponential sums; central limit theorem; INTEGERS; NUMBERS; POWER;
D O I
10.1112/S0010437X08003898
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to provide asymptotic expansions for the numbers # {p <= x : p prime, s(q) (p) = k} for k close to ((q - 1)/2) log(q) X, where s(q)(n) denotes the q-ary sum-of-digits function. The proof is based on a thorough analysis of exponential sums of the form Sigma(p <= x) e(alpha S(q)(p)) (where the sum is restricted to p prime), for which we have to extend a recent result by the second two authors.
引用
收藏
页码:271 / 292
页数:22
相关论文
共 23 条
[1]  
[Anonymous], J MATH SCI
[2]  
[Anonymous], PUBL MATH DEBRECEN
[3]   DISTRIBUTION OF THE VALUES OF Q-ADDITIVE FUNCTIONS ON POLYNOMIAL-SEQUENCES [J].
BASSILY, NL ;
KATAI, I .
ACTA MATHEMATICA HUNGARICA, 1995, 68 (04) :353-361
[4]   NOTE ON NORMAL NUMBERS [J].
COPELAND, AH ;
ERDOS, P .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (10) :857-860
[5]   POWER SUMS OF DIGITAL SUMS [J].
COQUET, J .
JOURNAL OF NUMBER THEORY, 1986, 22 (02) :161-176
[6]  
Delange H., 1975, ENSEIGN MATH, V21, P31
[7]   The sum-of-digits function of squares [J].
Drmota, M ;
Rivat, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2005, 72 :273-292
[8]   Study of integers with an average sum of digits [J].
Fouvry, E ;
Mauduit, C .
JOURNAL OF NUMBER THEORY, 2005, 114 (01) :135-152
[9]  
GRABNER P. J., 1992, APPL FIBONACCI NUMBE, V5, P263
[10]  
Graham S. W., 1991, London Math. Soc. Lecture Note Ser., V126