Toric degenerations of cluster varieties and cluster duality

被引:13
作者
Bossinger, Lara [1 ]
Frias-Medina, Bosco [2 ]
Magee, Timothy [3 ]
Najera Chavez, Alfredo [4 ]
机构
[1] UNAM, Inst Matemat, Unidad Oaxaca, Ctr Hist, Leon 2, Oaxaca De Juarez 68000, Oaxaca, Mexico
[2] UNAM, Ctr Ciencias Matemat, Campus Morelia,Antigua Carretera Patzcuaro 8701, Morelia 58089, Michoacan, Mexico
[3] Kings Coll London, Fac Nat & Math Sci, Dept Math, London WC2R 2LS, England
[4] UNAM, Inst Matemat, Unidad Oaxaca, Ctr Hist,CONACYT, Leon 2, Oaxaca De Juarez 68000, Oaxaca, Mexico
基金
英国工程与自然科学研究理事会;
关键词
cluster algebras; cluster varieties; toric degenerations; NEWTON-OKOUNKOV BODIES; MIRROR SYMMETRY; C-VECTORS; ALGEBRAS; REPRESENTATIONS; COMBINATORICS; COEFFICIENTS; GEOMETRY; SYSTEMS;
D O I
10.1112/S0010437X2000740X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of a Y-pattern with coefficients and its geometric counterpart: an X-cluster variety with coefficients. We use these constructions to build a flat degeneration of every skew-symmetrizable specially completed X-cluster variety (X) over bar to the toric variety associated to its g-fan. Moreover, we show that the fibers of this family are stratified in a natural way, with strata the specially completed X-varieties encoded by Star(tau) for each cone tau of the g-fan. These strata degenerate to the associated toric strata of the central fiber. We further show that the family is cluster dual to A(prin) of Gross, Hacking, Keel and Kontsevich [Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497-608], and the fibers cluster dual to A(t). Finally, we give two applications. First, we use our construction to identify the toric degeneration of Grassmannians from Rietsch and Williams [Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Math. J. 168 (2019), 3437-3527] with the Gross-Hacking-Keel-Kontsevich degeneration in the case of Gr(2)(C-5). Next, we use it to link cluster duality to Batyrev-Borisov duality of Gorenstein toric Fanos in the context of mirror symmetry.
引用
收藏
页码:2149 / 2206
页数:58
相关论文
共 51 条
[21]   Cluster algebras I: Foundations [J].
Fomin, S ;
Zelevinsky, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) :497-529
[22]   Cluster algebras IV: Coefficients [J].
Fomin, Sergey ;
Zelevinsky, Andrei .
COMPOSITIO MATHEMATICA, 2007, 143 (01) :112-164
[23]   c-vectors via T-tilting theory [J].
Fu, Changjian .
JOURNAL OF ALGEBRA, 2017, 473 :194-220
[24]  
Fu CJ, 2010, T AM MATH SOC, V362, P859
[25]  
Fulton W, 1993, Annals of Mathematics Studies
[26]  
Genz V., 2016, ARXIV161103465
[27]   Polyhedral parametrizations of canonical bases & cluster duality [J].
Genz, Volker ;
Koshevoy, Gleb ;
Schumann, Bea .
ADVANCES IN MATHEMATICS, 2020, 369
[28]  
Goncharov A., 2007, HDB TEICHMULLER THEO, V11, P647
[29]   CANONICAL BASES FOR CLUSTER ALGEBRAS [J].
Gross, Mark ;
Hacking, Paul ;
Keel, Sean ;
Kontsevich, Maxim .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 31 (02) :497-608
[30]   Birational geometry of cluster algebras [J].
Gross, Mark ;
Hacking, Paul ;
Keel, Sean .
ALGEBRAIC GEOMETRY, 2015, 2 (02) :137-175