Multisummability of formal solutions of singular perturbation problems

被引:21
作者
Balser, W [1 ]
Mozo-Fernández, J
机构
[1] Univ Ulm, Abt Angew Anal, D-89069 Ulm, Germany
[2] ETS Arquitectura, Dpt Matemat Aplicada Fundamental, Valladolid 47014, Spain
关键词
D O I
10.1006/jdeq.2001.4143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the summability of the unique formal power series solution of a singular perturbation problem for certain linear systems of ordinary meromorphic differential equations, using a new type of summability of power series in several (here: two) variables. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:526 / 545
页数:20
相关论文
共 13 条
  • [1] [Anonymous], FORMAL POWER SERIES
  • [2] BALSER W, 2000, ULM SEM FUNKT AN DIF
  • [3] Overstability: Towards a global study
    Benoit, E
    Fruchard, A
    Schafke, R
    Wallet, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07): : 873 - 878
  • [4] Canalis-Durand M, 2000, J REINE ANGEW MATH, V518, P95
  • [5] CANALISDURAND M, 1994, ASYMPTOTIC ANAL, V8, P185
  • [6] Mozo-Fernandez J., 1999, ANN FS TOULOUSE MATH, V8, P281
  • [7] The Gevrey asymptotics in the case of singular perturbations
    Sibuya, Y
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 165 (02) : 255 - 314
  • [8] Sibuya Y., 1962, FUNKC EKVACIOJ-SER I, V4, P29
  • [9] SUPERSTABILITY FOR A ONE-DIMENSIONAL ANALYTIC DIFFERENTIAL-EQUATION
    WALLET, G
    [J]. ANNALES DE L INSTITUT FOURIER, 1990, 40 (03) : 557 - 595
  • [10] ANALYTIC SINGULARITY AND SINGULAR PERTURBATION IN C(2)
    WALLET, G
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (02): : 185 - 208