Multisummability of formal solutions of singular perturbation problems

被引:21
作者
Balser, W [1 ]
Mozo-Fernández, J
机构
[1] Univ Ulm, Abt Angew Anal, D-89069 Ulm, Germany
[2] ETS Arquitectura, Dpt Matemat Aplicada Fundamental, Valladolid 47014, Spain
关键词
D O I
10.1006/jdeq.2001.4143
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the summability of the unique formal power series solution of a singular perturbation problem for certain linear systems of ordinary meromorphic differential equations, using a new type of summability of power series in several (here: two) variables. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:526 / 545
页数:20
相关论文
共 13 条
[1]  
[Anonymous], FORMAL POWER SERIES
[2]  
BALSER W, 2000, ULM SEM FUNKT AN DIF
[3]   Overstability: Towards a global study [J].
Benoit, E ;
Fruchard, A ;
Schafke, R ;
Wallet, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (07) :873-878
[4]  
Canalis-Durand M, 2000, J REINE ANGEW MATH, V518, P95
[5]  
CANALISDURAND M, 1994, ASYMPTOTIC ANAL, V8, P185
[6]  
Mozo-Fernandez J., 1999, ANN FS TOULOUSE MATH, V8, P281
[7]   The Gevrey asymptotics in the case of singular perturbations [J].
Sibuya, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 165 (02) :255-314
[8]  
Sibuya Y., 1962, FUNKC EKVACIOJ-SER I, V4, P29
[9]   SUPERSTABILITY FOR A ONE-DIMENSIONAL ANALYTIC DIFFERENTIAL-EQUATION [J].
WALLET, G .
ANNALES DE L INSTITUT FOURIER, 1990, 40 (03) :557-595
[10]   ANALYTIC SINGULARITY AND SINGULAR PERTURBATION IN C(2) [J].
WALLET, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (02) :185-208