Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries

被引:51
作者
Hua, Chuanshan [1 ]
Du, Ke [1 ]
Tan, Chaopu [1 ]
Peng, Zhongdong [1 ]
Cao, Yanbing [1 ]
Hu, Guorong [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
关键词
Lithium ion batteries; Cathode materials; Concentration-gradient; High capacity; Rate performance; ELECTROCHEMICAL PERFORMANCE; LIAL1/4NI3/4O2 R(3)OVER-BAR-M; SHUTTLECOCK BATTERIES; INSERTION MATERIAL; THERMAL-BEHAVIOR; HIGH-ENERGY; LINI1/3CO1/3MN1/3O2; LINI0.8CO0.1MN0.1O2; COPRECIPITATION; SPECTROSCOPY;
D O I
10.1016/j.jallcom.2014.06.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-energy full concentration-gradient cathode material with an average composition of Li(Ni0.8Co0.1-Mn0.1)O-2 has been successfully synthesized by a hydroxide co-precipitation method. Ni content decreases gradually along the radius of the spherical particle, and the content of Co and Mn increases. The electrochemical properties of this concentration-gradient material are studied and compared to those of the homogeneous Li(Ni0.8Co0.1Mn0.1)O-2 material. In the concentration-gradient material of Li(Ni0.8Co0.1Mn0.1)O-2, the inside part rich in Ni delivers a very high capacity, while the Mn-rich outside part improves the cycling stability and rate performance. The concentration-gradient material has superior electrochemical properties compared to the homogeneous material. The initial capacity of the concentration-gradient Li(Ni0.8Co0.01Mn0.1)O-2 is 185.2 mA h g(-1) at I C between 2.8 and 4.3 V and retains 93.2% after 100 cycles. The composite also has a good rate performance with a high capacity of about 175 mA h g(-1) even at 2 C rate. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:264 / 270
页数:7
相关论文
共 30 条
  • [11] A combined computational/experimental study on LiNi1/3Co1/3Mn1/3O2
    Hwang, BJ
    Tsai, YW
    Carlier, D
    Ceder, G
    [J]. CHEMISTRY OF MATERIALS, 2003, 15 (19) : 3676 - 3682
  • [12] Carbon coated Li3V2(PO4)3 cathode material prepared by a PVA assisted sol-gel method
    Jiang, Tao
    Pan, Wencheng
    Wang, Jian
    Bie, Xiaofei
    Du, Fei
    Wei, Yingjin
    Wang, Chunzhong
    Chen, Gang
    [J]. ELECTROCHIMICA ACTA, 2010, 55 (12) : 3864 - 3869
  • [13] Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via co-precipitation
    Kim, Myung-Hyoon
    Shin, Ho-Suk
    Shin, Dongwook
    Sun, Yang-Kook
    [J]. JOURNAL OF POWER SOURCES, 2006, 159 (02) : 1328 - 1333
  • [14] Lithium-reactive Co3(PO4)2 nanoparticle coating on high-capacity LiNi0.8Co0.16Al0.04O2 cathode material for lithium rechargeable batteries
    Kim, Yoojung
    Cho, Jaephil
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (06) : A495 - A499
  • [15] Synthesis and electrochemical properties for LiNiO2 substituted by other elements
    Kubo, K
    Fujiwara, M
    Yamada, S
    Arai, S
    Kanda, M
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (02) : 553 - 557
  • [16] A modified co-precipitation process to coat LiNi1/3Co1/3Mn1/3O2 onto LiNi0.8Co0.1Mn0.1O2 for improving the electrochemical performance
    Lu, Xibin
    Li, Xinhai
    Wang, Zhixing
    Guo, Huajun
    Yan, Guochun
    Yin, Xing
    [J]. APPLIED SURFACE SCIENCE, 2014, 297 : 182 - 187
  • [17] Structure and electrochemistry of Li[NixCo1-2xMnx]O2 (0≤x≤1/2)
    MacNeil, DD
    Lu, Z
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) : A1332 - A1336
  • [18] Synthesis and characterization of LiAl1/4Ni3/4O2 (R(3)over-bar-m) for lithium-ion (shuttlecock) batteries
    Ohzuku, T
    Ueda, A
    Kouguchi, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (12) : 4033 - 4039
  • [19] Innovative insertion material of LiAl1/4Ni3/4O2 (R(3)over-bar-m) for lithium-ion (shuttlecock) batteries
    Ohzuku, T
    Yanagawa, T
    Kouguchi, M
    Ueda, A
    [J]. JOURNAL OF POWER SOURCES, 1997, 68 (01) : 131 - 134
  • [20] Ohzuku T, 2001, CHEM LETT, P744