Study of full concentration-gradient Li(Ni0.8Co0.1Mn0.1)O2 cathode material for lithium ion batteries

被引:51
作者
Hua, Chuanshan [1 ]
Du, Ke [1 ]
Tan, Chaopu [1 ]
Peng, Zhongdong [1 ]
Cao, Yanbing [1 ]
Hu, Guorong [1 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
关键词
Lithium ion batteries; Cathode materials; Concentration-gradient; High capacity; Rate performance; ELECTROCHEMICAL PERFORMANCE; LIAL1/4NI3/4O2 R(3)OVER-BAR-M; SHUTTLECOCK BATTERIES; INSERTION MATERIAL; THERMAL-BEHAVIOR; HIGH-ENERGY; LINI1/3CO1/3MN1/3O2; LINI0.8CO0.1MN0.1O2; COPRECIPITATION; SPECTROSCOPY;
D O I
10.1016/j.jallcom.2014.06.049
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A high-energy full concentration-gradient cathode material with an average composition of Li(Ni0.8Co0.1-Mn0.1)O-2 has been successfully synthesized by a hydroxide co-precipitation method. Ni content decreases gradually along the radius of the spherical particle, and the content of Co and Mn increases. The electrochemical properties of this concentration-gradient material are studied and compared to those of the homogeneous Li(Ni0.8Co0.1Mn0.1)O-2 material. In the concentration-gradient material of Li(Ni0.8Co0.1Mn0.1)O-2, the inside part rich in Ni delivers a very high capacity, while the Mn-rich outside part improves the cycling stability and rate performance. The concentration-gradient material has superior electrochemical properties compared to the homogeneous material. The initial capacity of the concentration-gradient Li(Ni0.8Co0.01Mn0.1)O-2 is 185.2 mA h g(-1) at I C between 2.8 and 4.3 V and retains 93.2% after 100 cycles. The composite also has a good rate performance with a high capacity of about 175 mA h g(-1) even at 2 C rate. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:264 / 270
页数:7
相关论文
共 30 条
  • [1] Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells
    Abraham, DP
    Twesten, RD
    Balasubramanian, M
    Kropf, J
    Fischer, D
    McBreen, J
    Petrov, I
    Amine, K
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) : A1450 - A1456
  • [2] Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti)
    Arai, H
    Okada, S
    Sakurai, Y
    Yamaki, J
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) : 3117 - 3125
  • [3] Thermal behavior of Li1-yNiO2 and the decomposition mechanism
    Arai, H
    Okada, S
    Sakurai, Y
    Yamaki, J
    [J]. SOLID STATE IONICS, 1998, 109 (3-4) : 295 - 302
  • [4] Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries
    Chen, CH
    Liu, J
    Amine, K
    [J]. JOURNAL OF POWER SOURCES, 2001, 96 (02) : 321 - 328
  • [5] THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS
    DAHN, JR
    FULLER, EW
    OBROVAC, M
    VONSACKEN, U
    [J]. SOLID STATE IONICS, 1994, 69 (3-4) : 265 - 270
  • [6] THE CYCLING PROPERTIES OF THE LIXNI1-YCOYO2 ELECTRODE
    DELMAS, C
    SAADOUNE, I
    ROUGIER, A
    [J]. JOURNAL OF POWER SOURCES, 1993, 44 (1-3) : 595 - 602
  • [7] Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries
    Du, Ke
    Huang, Jinlong
    Cao, Yanbing
    Peng, Zhongdong
    Hu, Guorong
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 574 : 377 - 382
  • [8] Storage characteristics of LiNi0.8Co0.1+xMn0.1-xO2 (x=0, 0.03, and 0.06) cathode materials for lithium batteries
    Eom, Junho
    Kim, Min Gyu
    Cho, Jaephil
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (03) : A239 - A245
  • [9] Gao YA, 1998, ELECTROCHEM SOLID ST, V1, P117, DOI 10.1149/1.1390656
  • [10] Well-ordered spherical LiNixCo(1-2x)MnxO2 cathode materials synthesized from cobolt concentration-gradient precursors
    Huang, Zhenlei
    Gao, Jian
    He, Xiangming
    Li, Jianjun
    Jiang, Changyin
    [J]. JOURNAL OF POWER SOURCES, 2012, 202 : 284 - 290