Complexity aspects of the computation of the rank of a graph
被引:0
|
作者:
Ramos, Igor da Fonseca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, PESC COPPE, DCC IM, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, PESC COPPE, DCC IM, Rio De Janeiro, Brazil
Ramos, Igor da Fonseca
[1
]
dos Santos, Vinicius F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estado Rio de Janeiro, IME, Dept Matemat Aplicada, BR-20550011 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, PESC COPPE, DCC IM, Rio De Janeiro, Brazil
dos Santos, Vinicius F.
[2
]
Szwarcfiter, Jayme L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, PESC COPPE, DCC IM, NCE, Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, PESC COPPE, DCC IM, Rio De Janeiro, Brazil
Szwarcfiter, Jayme L.
[3
]
机构:
[1] Univ Fed Rio de Janeiro, PESC COPPE, DCC IM, Rio De Janeiro, Brazil
[2] Univ Estado Rio de Janeiro, IME, Dept Matemat Aplicada, BR-20550011 Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, PESC COPPE, DCC IM, NCE, Rio De Janeiro, Brazil
We consider the P-3-convexity on simple undirected graphs, in which a set of vertices S is convex if no vertex outside S has two or more neighbors in S. The convex hull H (S) of a set S is the smallest convex set containing S as a subset. A set S is a convexly independent set if v is not an element of H (S\{v}) for all v in S. The rank rk(G) of a graph is the size of the largest convexly independent set. In this paper we consider the complexity of determining rk(G). We show that the problem is NP-complete even for split or bipartite graphs with small diameter. We also show how to determine rk(G) in polynomial time for the well structured classes of graphs of trees and threshold graphs. Finally, we give a tight upper bound for rk(G), which in turn gives a tight upper bound for the Radon number as byproduct, which is the same obtained before by Henning, Rautenbach and Schafer. Additionally, we briefly show that the problem is NP-complete also in the monophonic convexity.
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
Zhou, Q. I. A. N. N. A. N.
Lu, Y. O. N. G.
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R ChinaJiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China