Spherical orthogonal polynomials and symbolic-numeric Gaussian cubature formulas

被引:0
|
作者
Cuyt, A
Benouahmane, B
Verdonk, B
机构
[1] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[2] Univ Hassan II, Fac Sci & Tech, Mohammadia 20650, Morocco
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is well-known that the classical univariate orthogonal polynomials give rise to highly efficient Gaussian quadrature rules. We show how the classical orthogonal polynomials can be generalized to a multivariate setting and how this generalization leads to Gaussian cubature rules for specific families of multivariate polynomials. The multivariate homogeneous orthogonal functions that we discuss here satisfy a unique slice projection property: they project to univariate orthogonal polynomials on every one-dimensional subspace spanned by a vector from the unit hypersphere. We therefore call them spherical orthogonal polynomials.
引用
收藏
页码:557 / 560
页数:4
相关论文
共 50 条
  • [21] Hybrid Symbolic-Numeric and Numerically-Assisted Symbolic Integration
    Iravanian, Shahriar
    Gowda, Shashi
    Rackauckas, Chris
    PROCEEDINGS OF THE 2024 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2024, 2024, : 410 - 418
  • [22] Mathematical Geosciences: Hybrid Symbolic-Numeric Methods
    Geist, Eric L.
    PURE AND APPLIED GEOPHYSICS, 2020, 177 (07) : 3543 - 3544
  • [23] Generation and verification of algorithms for symbolic-numeric processing
    Kocbach, L
    Liska, R
    JOURNAL OF SYMBOLIC COMPUTATION, 1998, 25 (03) : 367 - 382
  • [24] ORTHOGONAL POLYNOMIALS AND N-DIMENSIONAL CUBATURE FORMULAS . PRELIMINARY REPORT
    FRANKE, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 246 - &
  • [26] A Symbolic-Numeric Approach for Parametrizing Ruled Surfaces
    Sonia Pérez-Díaz
    Li-Yong Shen
    Journal of Systems Science and Complexity, 2020, 33 : 799 - 820
  • [27] Symbolic-numeric cooperation in an open science project
    San-Juan, Juan Felix
    Lopez, Rosario
    Lopez, Luis Maria
    Perez, Ivan
    12TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2010), 2011, : 37 - 46
  • [28] NONNEGATIVE TRIGONOMETRIC POLYNOMIALS IN MANY VARIABLES AND CUBATURE FORMULAS OF GAUSSIAN TYPE
    REZTSOV, AV
    MATHEMATICAL NOTES, 1991, 50 (5-6) : 1142 - 1146
  • [29] Symbolic-numeric analysis of flexible multibody systems
    Claus, H
    Schiehlen, W
    MECHANICS OF STRUCTURES AND MACHINES, 2002, 30 (01): : 1 - 30
  • [30] Symbolic-Numeric Integration of the Dynamical Cosserat Equations
    Lyakhov, Dmitry A.
    Gerdt, Vladimir P.
    Weber, Andreas G.
    Michels, Dominik L.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING, CASC 2017, 2017, 10490 : 301 - 312