ALMOST GLOBAL EXISTENCE FOR CUBIC NONLINEAR SCHRODINGER EQUATIONS IN ONE SPACE DIMENSION

被引:9
作者
Murphy, Jason [1 ]
Pusateri, Fabio [2 ]
机构
[1] Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USA
[2] Princeton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Cubic NLS; almost global existence; method of space-time resonances; WAVE-EQUATIONS; ASYMPTOTIC-BEHAVIOR; INITIAL DATA; LARGE TIME; LIFE-SPAN; SCATTERING; BOUNDS; NLS;
D O I
10.3934/dcds.2017089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-gauge-invariant cubic nonlinear Schrodinger equations in one space dimension. We show that initial data of size epsilon in a weighted Sobolev space lead to solutions with sharp L-x(infinity) decay up to time exp(C-epsilon(-2)). We also exhibit norm growth beyond this time for a specific choice of nonlinearity.
引用
收藏
页码:2077 / 2102
页数:26
相关论文
共 25 条
[11]   Logarithmic Time Decay for the Cubic Nonlinear Schrodinger Equations [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (14) :5604-5643
[12]  
Hayashi N, 2011, DIFFER INTEGRAL EQU, V24, P801
[13]  
Hayashi Nakao, 2008, PAC J APPL MATH, V1, P1
[14]   Global bounds for the cubic nonlinear Schrodinger equation (NLS) in one space dimension [J].
Ifrim, Mihaela ;
Tataru, Daniel .
NONLINEARITY, 2015, 28 (08) :2661-2675
[15]   ALMOST GLOBAL EXISTENCE TO NONLINEAR-WAVE EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F ;
KLAINERMAN, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (04) :443-455
[17]  
Kato J, 2011, DIFFER INTEGRAL EQU, V24, P923
[18]   Scattering and small data completeness for the critical nonlinear Schrodinger equation [J].
Lindblad, H ;
Soffer, A .
NONLINEARITY, 2006, 19 (02) :345-353
[19]  
Naumkin P. I., 2000, SUT J MATH, V36, p[1, 9]
[20]   Space-Time Resonances and the Null Condition for First-Order Systems of Wave Equations [J].
Pusateri, Fabio ;
Shatah, Jalal .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (10) :1495-1540