ALMOST GLOBAL EXISTENCE FOR CUBIC NONLINEAR SCHRODINGER EQUATIONS IN ONE SPACE DIMENSION

被引:9
作者
Murphy, Jason [1 ]
Pusateri, Fabio [2 ]
机构
[1] Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USA
[2] Princeton Univ, Dept Math, Fine Hall,304 Washington Rd, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Cubic NLS; almost global existence; method of space-time resonances; WAVE-EQUATIONS; ASYMPTOTIC-BEHAVIOR; INITIAL DATA; LARGE TIME; LIFE-SPAN; SCATTERING; BOUNDS; NLS;
D O I
10.3934/dcds.2017089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-gauge-invariant cubic nonlinear Schrodinger equations in one space dimension. We show that initial data of size epsilon in a weighted Sobolev space lead to solutions with sharp L-x(infinity) decay up to time exp(C-epsilon(-2)). We also exhibit norm growth beyond this time for a specific choice of nonlinearity.
引用
收藏
页码:2077 / 2102
页数:26
相关论文
共 25 条
[1]  
[Anonymous], 2004, COMPLEX VAR THEORY A, DOI 10.1080/02781070410001710353
[3]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[4]  
Coifman R., 1991, ONDELETTES OPERATEUR
[5]   Long-time asymptotics for solutions of the NLS equation with initial data in a weighted Sobolev space [J].
Deift, P ;
Zhou, X .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (08) :1029-1077
[6]   Global solutions for 2D quadratic Schrodinger equations [J].
Germain, P. ;
Masmoudi, N. ;
Shatah, J. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (05) :505-543
[7]   Global Solutions for 3D Quadratic Schrodinger Equations [J].
Germain, Pierre ;
Masmoudi, Nader ;
Shatah, Jalal .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (03) :414-432
[8]   Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations [J].
Hayashi, N ;
Naumkin, PI .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :369-389
[9]   Large time behavior for the cubic nonlinear Schrodinger equation [J].
Hayashi, N ;
Naumkin, PI .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (05) :1065-1085
[10]  
HAYASHI N, 2002, INT J PURE APPL MATH, V3, P255