Tuning Electron Transport Direction through the Deposition Sequence of MoS2 and WS2 on Fluorine-Doped Tin Oxide for Improved Electrocatalytic Reduction Efficiency

被引:15
作者
Liu, Yajuan [1 ]
Yin, Jie [1 ]
Zhou, Yuqing [1 ,2 ]
Sun, Luo [1 ]
Yue, Wenjin [3 ]
Sun, Yueming [1 ]
Wang, Yuqiao [1 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Inst Adv Mat, Nanjing 211189, Jiangsu, Peoples R China
[2] Nanjing Polytech Inst, Sch Chem Engn & Mat, Nanjing 210048, Jiangsu, Peoples R China
[3] Anhui Polytech Univ, Sch Biochem Engn, Wuhu 241000, Peoples R China
基金
中国国家自然科学基金;
关键词
transition-metal sulfides; energy level impedance; electron transport; electrocatalytic reduction; dye-sensitized solar cells; ULTRAFAST CHARGE-TRANSFER; HETEROSTRUCTURES; TRANSITION; METAL;
D O I
10.1002/celc.201900409
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
MoS2-WS2 films on fluorine-doped tin oxide (FTO) can be vulcanized through chemical vapor deposition by using MoO3 and WO3 as precursors prepared by pulsed laser deposition. The electron transport direction can be tuned by the deposition sequence of metal sulfides on FTO, owing to the differences in the conduction bands (CBs, MoS2 -4.38 vs. WS2 -4.13eV), defined as the energy level impedance to adjust the electron transport rate. It means that the electron transport rate from FTO to the MoS2 surface of FTO/WS2/MoS2 might be higher than the rate from FTO to the WS2 surface of FTO/MoS2/WS2. The assumption was verified by the electrocatalytic reduction of I-3(-) to I- using the above films as a counter electrode in a dye-sensitized solar cell. The short-circuit photocurrent density of FTO/WS2/MoS2 achieved 14.16mAcm(-2), which is superior to FTO/MoS2/WS2 (11.72mAcm(-2)), indicating that the catalytic activity of FTO/WS2/MoS2 was higher than that of FTO/MoS2/WS2. The electron transport direction can be successfully regulated by tuning the deposition order.
引用
收藏
页码:2737 / 2740
页数:4
相关论文
共 19 条
[1]   Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures [J].
Bogaert, Kevin ;
Liu, Song ;
Chesin, Jordan ;
Titow, Denis ;
Gradecak, Silvija ;
Garaj, Slaven .
NANO LETTERS, 2016, 16 (08) :5129-5134
[2]   Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures [J].
Boulesbaa, Abdelaziz ;
Wang, Kai ;
Mahjouri-Samani, Masoud ;
Tian, Mengkun ;
Puretzky, Alexander A. ;
Ivanov, Ilia ;
Rouleau, Christopher M. ;
Xiao, Kai ;
Sumpter, Bobby G. ;
Geohegan, David B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (44) :14713-14719
[3]   Quantitative Determination of the Band Gap of WS2 with Ambipolar Ionic Liquid-Gated Transistors [J].
Braga, Daniele ;
Lezama, Ignacio Gutierrez ;
Berger, Helmuth ;
Morpurgo, Alberto F. .
NANO LETTERS, 2012, 12 (10) :5218-5223
[4]   Controlling the Metal to Semiconductor Transition of MoS2 and WS2 in Solution [J].
Chou, Stanley S. ;
Huang, Yi-Kai ;
Kim, Jaemyung ;
Kaehr, Bryan ;
Foley, Brian M. ;
Lu, Ping ;
Dykstra, Conner ;
Hopkins, Patrick E. ;
Brinker, C. Jeffrey ;
Huang, Jiaxing ;
Dravid, Vinayak P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) :1742-1745
[5]  
Gong YJ, 2014, NAT MATER, V13, P1135, DOI [10.1038/nmat4091, 10.1038/NMAT4091]
[6]  
Hong XP, 2014, NAT NANOTECHNOL, V9, P682, DOI [10.1038/NNANO.2014.167, 10.1038/nnano.2014.167]
[7]   Two-Dimensional Nanosheets and Layered Hybrids of MoS2 and WS2 through Exfoliation of Ammoniated MS2 (M = Mo,W) [J].
Jeffery, A. Anto ;
Nethravathi, C. ;
Rajamathi, Michael .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (02) :1386-1396
[8]  
Lee CH, 2014, NAT NANOTECHNOL, V9, P676, DOI [10.1038/NNANO.2014.150, 10.1038/nnano.2014.150]
[9]   MoS2/WS2 Heterojunction for Photoelectrochemical Water Oxidation [J].
Pesci, Federico M. ;
Sokolikova, Maria S. ;
Grotta, Chiara ;
Sherrell, Peter C. ;
Reale, Francesco ;
Sharda, Kanudha ;
Ni, Na ;
Palczynski, Pawel ;
Mattevi, Cecilia .
ACS CATALYSIS, 2017, 7 (08) :4990-4998
[10]   Hole Transport in Exfoliated Monolayer MoS2 [J].
Ponomarev, Evgeniy ;
Pasztor, Arpad ;
Waelchli, Adrien ;
Scarfato, Alessandro ;
Ubrig, Nicolas ;
Renner, Christoph ;
Morpurgo, Alberto F. .
ACS NANO, 2018, 12 (03) :2669-2676