A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data

被引:47
作者
Pandey, Gaurav [1 ,2 ]
Pandey, Om P. [1 ,2 ]
Rogers, Angela J. [3 ]
Ahsen, Mehmet E. [1 ,2 ]
Hoffman, Gabriel E. [1 ,2 ]
Raby, Benjamin A. [4 ,5 ,6 ]
Weiss, Scott T. [4 ,5 ,6 ]
Schadt, Eric E. [1 ,2 ]
Bunyavanich, Supinda [1 ,2 ,7 ]
机构
[1] Icahn Sch Med Mt Sinai, Icahn Inst Genom & Multiscale Biol, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[3] Stanford Univ, Dept Med, Sch Med, Div Pulm & Crit Care Med, Stanford, CA 94305 USA
[4] Brigham & Womens Hosp, Channing Div Network Med, 75 Francis St, Boston, MA 02115 USA
[5] Brigham & Womens Hosp, Div Pulm & Crit Care Med, 75 Francis St, Boston, MA 02115 USA
[6] Harvard Med Sch, Boston, MA USA
[7] Icahn Sch Med Mt Sinai, Dept Pediat, Div Allergy & Immunol, New York, NY 10029 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
美国国家卫生研究院;
关键词
CHILDHOOD ASTHMA; SEQ; MANAGEMENT; SIGNATURE; DIAGNOSIS; SELECTION; GENETICS; GENOMICS; CHILDREN; THERAPY;
D O I
10.1038/s41598-018-27189-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Asthma is a common, under-diagnosed disease affecting all ages. We sought to identify a nasal brush-based classifier of mild/moderate asthma. 190 subjects with mild/moderate asthma and controls underwent nasal brushing and RNA sequencing of nasal samples. A machine learning-based pipeline identified an asthma classifier consisting of 90 genes interpreted via an L2-regularized logistic regression classification model. This classifier performed with strong predictive value and sensitivity across eight test sets, including (1) a test set of independent asthmatic and control subjects profiled by RNA sequencing (positive and negative predictive values of 1.00 and 0.96, respectively; AUC of 0.994), (2) two independent case-control cohorts of asthma profiled by microarray, and (3) five cohorts with other respiratory conditions (allergic rhinitis, upper respiratory infection, cystic fibrosis, smoking), where the classifier had a low to zero misclassification rate. Following validation in large, prospective cohorts, this classifier could be developed into a nasal biomarker of asthma.
引用
收藏
页数:15
相关论文
共 65 条
  • [1] [Anonymous], 2015, CURR ASTHM PREV PERC
  • [2] [Anonymous], 2007, 084051 NAT HEART LUN
  • [3] Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation
    Badal, Brateil
    Solovyov, Alexander
    Di Cecilia, Serena
    Chan, Joseph Minhow
    Chang, Li-Wei
    Iqbal, Ramiz
    Aydin, Iraz T.
    Rajan, Geena S.
    Chen, Chen
    Abbate, Franco
    Arora, Kshitij S.
    Tanne, Antoine
    Gruber, Stephen B.
    Johnson, Timothy M.
    Fullen, Douglas R.
    Raskin, Leon
    Phelps, Robert
    Bhardwaj, Nina
    Bernstein, Emily
    Ting, David T.
    Brunner, Georg
    Schadt, Eric E.
    Greenbaum, Benjamin D.
    Celebi, Julide Tok
    [J]. JCI INSIGHT, 2017, 2 (09)
  • [4] NCBI GEO: archive for functional genomics data sets-update
    Barrett, Tanya
    Wilhite, Stephen E.
    Ledoux, Pierre
    Evangelista, Carlos
    Kim, Irene F.
    Tomashevsky, Maxim
    Marshall, Kimberly A.
    Phillippy, Katherine H.
    Sherman, Patti M.
    Holko, Michelle
    Yefanov, Andrey
    Lee, Hyeseung
    Zhang, Naigong
    Robertson, Cynthia L.
    Serova, Nadezhda
    Davis, Sean
    Soboleva, Alexandra
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D991 - D995
  • [5] Statistics review 14: Logistic regression
    Bewick, V
    Cheek, L
    Ball, J
    [J]. CRITICAL CARE, 2005, 9 (01): : 112 - 118
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] BIOMARKERS Portents of malignancy
    Brower, Vicki
    [J]. NATURE, 2011, 471 (7339) : S19 - S21
  • [8] Systems biology of asthma and allergic diseases: A multiscale approach
    Bunyavanich, Supinda
    Schadt, Eric E.
    [J]. JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2015, 135 (01) : 31 - 42
  • [9] A tutorial on Support Vector Machines for pattern recognition
    Burges, CJC
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) : 121 - 167
  • [10] 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer
    Cardoso, F.
    van't Veer, L. J.
    Bogaerts, J.
    Slaets, L.
    Viale, G.
    Delaloge, S.
    Pierga, J. -Y.
    Brain, E.
    Causeret, S.
    DeLorenzi, M.
    Glas, A. M.
    Golfinopoulos, V.
    Goulioti, T.
    Knox, S.
    Matos, E.
    Meulemans, B.
    Neijenhuis, P. A.
    Nitz, U.
    Passalacqua, R.
    Ravdin, P.
    Rubio, I. T.
    Saghatchian, M.
    Smilde, T. J.
    Sotiriou, C.
    Stork, L.
    Straehle, C.
    Thomas, G.
    Thompson, A. M.
    van der Hoeven, J. M.
    Vuylsteke, P.
    Bernards, R.
    Tryfonidis, K.
    Rutgers, E.
    Piccart, M.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2016, 375 (08) : 717 - 729