Efficient MATLAB Codes for the 2D/3D Stokes Equation with the Mini-Element

被引:10
|
作者
Koko, Jonas [1 ]
机构
[1] Univ Blaise Pascal, LIMOS, CNRS UMR 6158, ISIMA, Campus Cezeaux BP 10125, F-63173 Aubiere, France
关键词
finite element method; Stokes problem; Uzawa conjugate gradient; MATLAB; ELEMENT;
D O I
10.15388/Informatica.2019.205
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a fastMATLAB implementation of themini-element (i.e. P1-Bubble/P1) for the finite element approximation of the generalized Stokes equation in 2D and 3D. We use cell arrays to derive vectorized assembling functions. We also propose a Uzawa conjugate gradient method as an iterative solver for the global Stokes system. Numerical experiments show that our implementation has an (almost) optimal time-scaling. For 3D problems, the proposed Uzawa conjugate gradient algorithm outperforms MATLAB built-in linear solvers.
引用
收藏
页码:243 / 268
页数:26
相关论文
共 50 条
  • [31] The efficient generation of unstructured control volumes in 2D and 3D
    Leszczynski, J
    Pluta, S
    PARALLEL PROCESSING APPLIED MATHEMATICS, 2002, 2328 : 703 - 710
  • [32] A computationally efficient hybrid 2D–3D subwoofer model
    Ahmad H. Bokhari
    Martin Berggren
    Daniel Noreland
    Eddie Wadbro
    Scientific Reports, 11
  • [33] Efficient 3D Object Visualization via 2D Images
    Al-Shayeh, Kitara Kadhim
    Al-Ani, Muzhir Shaban
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2009, 9 (11): : 234 - 239
  • [34] SIMPLE AND EFFICIENT 2D AND 3D SPAN CLIPPING ALGORITHMS
    DUVANENKO, VJ
    GYURCSIK, RS
    ROBBINS, WE
    COMPUTERS & GRAPHICS, 1993, 17 (01) : 39 - 54
  • [35] Efficient 2D to 3D video conversion implemented on DSP
    Ramos-Diaz, Eduardo
    Kravchenko, Victor
    Ponomaryov, Volodymyr
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2011, : 1 - 9
  • [36] Superconvergence of the MINI mixed finite element discretization of the Stokes problem: An experimental study in 3D
    Cioncolini, Andrea
    Boffi, Daniele
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2022, 201
  • [37] 3D and 2D/3D holograms model
    A. A. Boriskevich
    V. K. Erohovets
    V. V. Tkachenko
    Optical Memory and Neural Networks, 2012, 21 (4) : 242 - 248
  • [38] Fundamental solutions for the Stokes equations: Numerical applications for 2D and 3D flows
    Alves, Carlos J. S.
    Serrao, Rodrigo G.
    Silvestre, Ana L.
    APPLIED NUMERICAL MATHEMATICS, 2021, 170 (170) : 55 - 73
  • [39] PRESSURE JUMP CONDITIONS FOR STOKES EQUATIONS WITH DISCONTINUOUS VISCOSITY IN 2D AND 3D
    Ito, Kuzufumi
    Li, Zhilin
    Wan, Xiaohai
    METHODS AND APPLICATIONS OF ANALYSIS, 2006, 13 (02) : 199 - 214
  • [40] Regularity of the 3D Navier-Stokes equations with viewpoint of 2D flow
    Bae, Hyeong-Ohk
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4889 - 4900