Efficient MATLAB Codes for the 2D/3D Stokes Equation with the Mini-Element

被引:10
|
作者
Koko, Jonas [1 ]
机构
[1] Univ Blaise Pascal, LIMOS, CNRS UMR 6158, ISIMA, Campus Cezeaux BP 10125, F-63173 Aubiere, France
关键词
finite element method; Stokes problem; Uzawa conjugate gradient; MATLAB; ELEMENT;
D O I
10.15388/Informatica.2019.205
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a fastMATLAB implementation of themini-element (i.e. P1-Bubble/P1) for the finite element approximation of the generalized Stokes equation in 2D and 3D. We use cell arrays to derive vectorized assembling functions. We also propose a Uzawa conjugate gradient method as an iterative solver for the global Stokes system. Numerical experiments show that our implementation has an (almost) optimal time-scaling. For 3D problems, the proposed Uzawa conjugate gradient algorithm outperforms MATLAB built-in linear solvers.
引用
收藏
页码:243 / 268
页数:26
相关论文
共 50 条
  • [1] MINI Element for the Navier-Stokes System in 3D: Vectorized Codes and Superconvergence
    Kucera, Radek
    Arzt, Vladimir
    Koko, Jonas
    INFORMATICA, 2024, 35 (02) : 341 - 361
  • [2] Efficient and flexible MATLAB implementation of 2D and 3D elastoplastic problems
    Cermak, M.
    Sysala, S.
    Valdman, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 355 : 595 - 614
  • [3] Efficient Finite Element Modeling of Scattering for 2D and 3D Problems
    Wilcox, Paul D.
    Velichko, Alexander
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2010, PTS 1 AND 2, 2010, 7650
  • [4] 3D reconstruction of 2D ICT images by Matlab
    Wei Dongbo
    Li Dan
    Tang Qibo
    Xu Haijun
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 3949 - 3952
  • [5] Computationally Efficient Extension of a 2D Integral Equation Propagation Model to 3D
    Kavanagh, Ian
    Brennan, Conor
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2015, : 187 - 190
  • [6] Intrinsic Stokes parameters for 3D and 2D polarization states
    Gil, J. J.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2015, 10
  • [7] The method of fundamental solutions for 2D and 3D Stokes problems
    Young, DL
    Jane, SJ
    Fan, CM
    Murugesan, K
    Tsai, CC
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (01) : 1 - 8
  • [8] Converting 2D Video to 3D: An Efficient Path to a 3D Experience
    Cao, Xun
    Bovik, Alan C.
    Wang, Yao
    Dai, Qionghai
    IEEE MULTIMEDIA, 2011, 18 (04) : 12 - 17
  • [9] Meshless solution of 2D and 3D Stokes flow using the radial basis integral equation method
    Ooi, E. H.
    Popov, V.
    BOUNDARY ELEMENTS AND OTHER MESH REDUCTION METHODS XXXIV, 2012, 53 : 73 - 81
  • [10] A highly efficient operator-splitting finite element method for 2D/3D nonlinear Allen-Cahn equation
    Xiao, Xufeng
    Gui, Dongwei
    Feng, Xinlong
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2017, 27 (02) : 530 - 542