Puncturing maximum rank distance codes

被引:5
|
作者
Csajbok, Bence [1 ]
Siciliano, Alessandro [2 ]
机构
[1] Eotvos Lorand Univ, Dept Geometry, MTA ELTE Geometr & Algebra Combinator Res Grp, Pazmany P Stny 1-C, H-1117 Budapest, Hungary
[2] Univ Basilicata, Dipartimento Matemat Informat & Econ, Potenza, Italy
关键词
Maximum rank distance code; Circulant matrix; Singer cycle;
D O I
10.1007/s10801-018-0833-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate punctured maximum rank distance codes in cyclic models for bilinear forms of finite vector spaces. In each of these models, we consider an infinite family of linear maximum rank distance codes obtained by puncturing generalized twisted Gabidulin codes. We calculate the automorphism group of such codes, and we prove that this family contains many codes which are not equivalent to any generalized Gabidulin code. This solves a problem posed recently by Sheekey (Adv Math Commun 10:475-488, 2016).
引用
收藏
页码:507 / 534
页数:28
相关论文
共 50 条
  • [1] Puncturing maximum rank distance codes
    Bence Csajbók
    Alessandro Siciliano
    Journal of Algebraic Combinatorics, 2019, 49 : 507 - 534
  • [2] THEORY OF CODES WITH MAXIMUM RANK DISTANCE.
    Gabidulin, E.M.
    Problems of information transmission, 1985, 21 (01) : 1 - 12
  • [3] On the genericity of maximum rank distance and Gabidulin codes
    Alessandro Neri
    Anna-Lena Horlemann-Trautmann
    Tovohery Randrianarisoa
    Joachim Rosenthal
    Designs, Codes and Cryptography, 2018, 86 : 341 - 363
  • [4] On the genericity of maximum rank distance and Gabidulin codes
    Neri, Alessandro
    Horlemann-Trautmann, Anna-Lena
    Randrianarisoa, Tovohery
    Rosenthal, Joachim
    DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (02) : 341 - 363
  • [5] Maximum flag-rank distance codes
    Alfarano, Gianira N.
    Neri, Alessandro
    Zullo, Ferdinando
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 207
  • [6] Maximum rank distance codes as space-time codes
    Lusina, P
    Gabidulin, E
    Bossert, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (10) : 2757 - 2760
  • [7] Linear Maximum Rank Distance Codes of Exceptional Type
    Bartoli, Daniele
    Zini, Giovanni
    Zullo, Ferdinando
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (06) : 3627 - 3636
  • [8] Extending two families of maximum rank distance codes
    Neri, Alessandro
    Santonastaso, Paolo
    Zullo, Ferdinando
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 81
  • [9] A NEW FAMILY OF LINEAR MAXIMUM RANK DISTANCE CODES
    Sheekey, John
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (03) : 475 - 488
  • [10] Multiple-Rate Maximum Rank Distance Codes
    Durai, R. S. Raja
    PROCEEDINGS OF 2016 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA 2016), 2016, : 696 - 699