Nonlinear coupled-mode theory for periodic plasmonic waveguides and metamaterials with loss and gain

被引:37
|
作者
Sukhorukov, Andrey A. [1 ]
Solntsev, Alexander S.
Kruk, Sergey S.
Neshev, Dragomir N.
Kivshar, Yuri S.
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
INDEX; PROPAGATION; ENHANCEMENT; GENERATION;
D O I
10.1364/OL.39.000462
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We derive general coupled-mode equations describing the nonlinear interaction of electromagnetic modes in periodic media with loss and gain. Our approach is rigorously based on the Lorentz reciprocity theorem, and it can be applied to a broad range of metal-dielectric photonic structures, including plasmonic waveguides and metamaterials. We verify that our general results agree with the previous analysis of particular cases, and predict novel effects on self- and cross-phase modulation in multilayer nonlinear fishnet metamaterials. (C) 2014 Optical Society of America
引用
收藏
页码:462 / 465
页数:4
相关论文
共 30 条
  • [1] Nonlinear coupled-mode theory for periodic waveguides and metamaterials with loss and gain
    Sukhorukov, Andrey A.
    Solntsev, Alexander S.
    Kruk, Sergey S.
    Neshev, Dragomir N.
    Kivshar, Yuri S.
    FIFTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANO-PHOTONICS (TACONA-PHOTONICS 2012), 2012, 1475 : 80 - 82
  • [2] Generalized coupled-mode formalism in reciprocal waveguides with gain, loss, anisotropy, or bianisotropy
    Chen, Weijin
    Xiong, Zhongfei
    Xu, Jing
    Chen, Yuntian
    PHYSICAL REVIEW B, 2019, 99 (19)
  • [3] Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing
    Chen, Che
    Oh, Sang-Hyun
    Li, Mo
    OPTICS EXPRESS, 2020, 28 (02) : 2020 - 2036
  • [4] Coupled mode theory for irregular acoustic waveguides with loss
    Pannatoni, R. F.
    ACOUSTICAL PHYSICS, 2011, 57 (01) : 36 - 50
  • [5] Improving the performance of nanostructure multifunctional graphene plasmonic logic gates utilizing coupled-mode theory
    Sadeghi, Tannaz
    Golmohammadi, Saeed
    Farmani, Ali
    Baghban, Hamed
    APPLIED PHYSICS B-LASERS AND OPTICS, 2019, 125 (10):
  • [6] Low-Loss Slow-Light in Periodic Plasmonic Waveguides
    Zhang, Lingxuan
    Lu, Xiaoyuan
    Gong, Yongkang
    Copner, Nigel
    Zhao, Wei
    Wang, Guoxi
    Zhang, Wenfu
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2015, 27 (11) : 1208 - 1211
  • [7] Combining FDTD and coupled-mode theory for self-pulsing modeling in coupled nonlinear microring resonators
    Jebali, Nessim
    Bodiou, Loic
    Charrier, Joel
    Armaroli, Andrea
    Dumeige, Yannick
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (09) : 2557 - 2563
  • [8] Coupled mode theory for plasmonic couplers
    Tuniz, Alessandro
    Song, Alex Y.
    Della Valle, Giuseppe
    de Sterke, C. Martijn
    APPLIED PHYSICS REVIEWS, 2024, 11 (02)
  • [9] Coupled-Mode Equations and Gap Solitons in a Two-Dimensional Nonlinear Elliptic Problem with a Separable Periodic Potential
    Dohnal, Tomas
    Pelinovsky, Dmitry
    Schneider, Guido
    JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (02) : 95 - 131
  • [10] Coupling constant of microcavity waveguides based on coupled mode theory
    Lin, Xu-Sheng
    Yan, Jun-Hu
    OPTICS COMMUNICATIONS, 2009, 282 (15) : 3081 - 3084