Bosonic oscillator in the presence of minimal length

被引:36
|
作者
Falek, M. [1 ]
Merad, M. [1 ]
机构
[1] Univ Oum El Bouaghi, Dept Phys, Oum El Bouaghi 04000, Algeria
关键词
eigenvalues and eigenfunctions; harmonic oscillators; matrix algebra; quantum gravity; quantum theory; Schrodinger equation; GENERALIZED UNCERTAINTY PRINCIPLE; KEMMER-PETIAU OSCILLATOR; DIRAC-OSCILLATOR; QUANTUM-MECHANICS; STRING THEORY; NONCOMMUTATIVE SPACE; HARMONIC-OSCILLATOR; PLANCK-SCALE; KLEIN-GORDON; EQUATION;
D O I
10.1063/1.3076900
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact solution of the one-dimensional Bosonic oscillator for spin 1 and spin 0, in the momentum space with the presence of minimal length uncertainty, the energy eigenvalues, and eigenfunctions are then determined for both cases.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A generalized bosonic oscillator in the presence of a minimal length
    Falek, M.
    Merad, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
  • [2] Klein Paradox for the Bosonic Equation in the Presence of Minimal Length
    Falek, M.
    Merad, M.
    Moumni, M.
    FOUNDATIONS OF PHYSICS, 2015, 45 (05) : 507 - 524
  • [3] Klein Paradox for the Bosonic Equation in the Presence of Minimal Length
    M. Falek
    M. Merad
    M. Moumni
    Foundations of Physics, 2015, 45 : 507 - 524
  • [4] The time-dependent linear potential in the presence of a minimal length
    Merad, M.
    Falek, M.
    PHYSICA SCRIPTA, 2009, 79 (01)
  • [5] Harmonic oscillator with minimal length, minimal momentum, and maximal momentum uncertainties in SUSYQM framework
    Asghari, M.
    Pedram, P.
    Nozari, K.
    PHYSICS LETTERS B, 2013, 725 (4-5) : 451 - 455
  • [6] Pseudoharmonic oscillator in quantum mechanics with a minimal length
    Bouaziz, Djamil
    Boukhellout, Abdelmalek
    MODERN PHYSICS LETTERS A, 2014, 29 (28)
  • [7] (2+1)-dimensional Klein-Gordon oscillator under a magnetic field in the presence of a minimal length in the noncommutative space
    Wu, Shu-Rui
    Long, Zheng-Wen
    Long, Chao-Yun
    Wang, Bing-Quan
    Liu, Yun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2017, 32 (25):
  • [8] Massive fermions interacting via a harmonic oscillator in the presence of a minimal length uncertainty relation
    Falaye, B. J.
    Dong, Shi-Hai
    Oyewumi, K. J.
    Haiwi, K. F.
    Ikhdair, S. M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2015, 24 (11):
  • [9] Spinorial Relativistic Particle in the Presence of a Minimal Length
    Zeroual, F.
    Merad, M.
    8TH INTERNATIONAL CONFERENCE ON PROGRESS IN THEORETICAL PHYSICS (ICPTP 2011), 2012, 1444 : 453 - 456
  • [10] Two-dimensional boson oscillator under a magnetic field in the presence of a minimal length in the non-commutative space
    Selema, Z.
    Boumal, A.
    REVISTA MEXICANA DE FISICA, 2021, 67 (02) : 226 - 237