Bosonic oscillator in the presence of minimal length

被引:36
作者
Falek, M. [1 ]
Merad, M. [1 ]
机构
[1] Univ Oum El Bouaghi, Dept Phys, Oum El Bouaghi 04000, Algeria
关键词
eigenvalues and eigenfunctions; harmonic oscillators; matrix algebra; quantum gravity; quantum theory; Schrodinger equation; GENERALIZED UNCERTAINTY PRINCIPLE; KEMMER-PETIAU OSCILLATOR; DIRAC-OSCILLATOR; QUANTUM-MECHANICS; STRING THEORY; NONCOMMUTATIVE SPACE; HARMONIC-OSCILLATOR; PLANCK-SCALE; KLEIN-GORDON; EQUATION;
D O I
10.1063/1.3076900
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact solution of the one-dimensional Bosonic oscillator for spin 1 and spin 0, in the momentum space with the presence of minimal length uncertainty, the energy eigenvalues, and eigenfunctions are then determined for both cases.
引用
收藏
页数:9
相关论文
共 62 条
[1]  
AKHOURY R, 2002, MOD PHYS LETT, V37, P572
[2]   SUPERSTRING COLLISIONS AT PLANCKIAN ENERGIES [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1987, 197 (1-2) :81-88
[3]  
[Anonymous], 1980, TABLES INTEGRALS SER
[4]   ON PARARELATIVISTIC QUANTUM OSCILLATORS [J].
BECKERS, J ;
DEBERGH, N ;
NIKITIN, AG .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) :3387-3392
[5]   On connection between the two-body Dirac oscillator and Kemmer oscillators [J].
Bednar, M ;
Ndimubandi, J ;
Nikitin, AG .
CANADIAN JOURNAL OF PHYSICS, 1997, 75 (05) :283-290
[6]   Hydrogen-atom spectrum under a minimal-length hypothesis [J].
Benczik, S ;
Chang, LN ;
Minic, D ;
Takeuchi, T .
PHYSICAL REVIEW A, 2005, 72 (01)
[7]   Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation [J].
Benczik, S ;
Chang, LN ;
Minic, D ;
Okamura, N ;
Rayyan, S ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 66 (02) :1
[8]   Regularization of the singular inverse square potential in quantum mechanics with a minimal length [J].
Bouaziz, Djamil ;
Bawin, Michel .
PHYSICAL REVIEW A, 2007, 76 (03)
[9]   Asymptotic iteration method solutions to the relativistic Duffin-Kemmer-Petiau equation [J].
Boztosun, I. ;
Karakoc, M. ;
Yasuk, F. ;
Durmus, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
[10]   Minimal length uncertainty relation and the hydrogen atom [J].
Brau, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44) :7691-7696