DEEP-BASED FISHER VECTOR FOR MOBILE VISUAL SEARCH

被引:0
作者
Huang, Chen [1 ]
Zhang, Shengchuan [1 ]
Lin, Xianming [1 ]
Liu, Xiangrong [1 ]
Ji, Rongrong [1 ]
机构
[1] Xiamen Univ, Sch Informat Sci & Engn, Xiamen 361005, Peoples R China
来源
2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2017年
关键词
CDVS; mobile visual search; Fisher Vector; autoencoder; fisher layer;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We tackle the problem of mobile visual search. Moving pictures experts group (MPEG) has completed a standard named compact descriptor for visual search (CDVS) to provide a standardized syntax in the context of image retrieval application. CDVS applies principal components analysis to reduce the dimension of local feature descriptor as the input of global descriptor pipeline, and utilizes traditional fisher vector as the local feature descriptor aggregation algorithm. However, the descriptor components of SIFT and Fisher Vector (FV) have highly non-Gaussian statistics, and applying a single PCA transform can in-fact hurt compression performance at high rates. We develop a net-based architecture combining neural networks with FV layer to obtain fisher vector. There are two advantages in our architecture comparing with CDVS global descriptor pipeline. One is that we employ "autoencoder" networks to reduce the dimensionality of data, the other is that we exploit a trainable system to learn parameters after the FV codebook obtained. The experiments demonstrate an obvious advantage of our proposed architecture in terms of CDVS retrieval task.
引用
收藏
页码:3430 / 3434
页数:5
相关论文
共 50 条
[31]   Mobile visual search algorithm based on improved VGG-F and hash with application in IoT [J].
Ji, Shanshan ;
Li, Jianxin ;
Liu, Jie ;
Cao, Wenliang ;
Li, Bin ;
Jiang, Fei ;
Liu, Yang .
INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2023, 14 (2-3) :94-106
[32]   TOWARDS COMPACT VISUAL DESCRIPTOR VIA DEEP FISHER NETWORK WITH BINARY EMBEDDING [J].
Qian, Jianqiang ;
Lin, Xianming ;
Liu, Hong ;
Deng, Youming ;
Ji, Rongrong .
2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
[33]   Sparse Coding Based Fisher Vector Using a Bayesian Approach [J].
Lim, Kart-Leong ;
Wang, Han .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (01) :91-95
[34]   Feature grouping and local soft match for mobile visual search [J].
Liu, Xianglong ;
Lang, Bo ;
Xu, Yi ;
Cheng, Bo .
PATTERN RECOGNITION LETTERS, 2012, 33 (03) :239-246
[35]   SORTING LOCAL DESCRIPTORS FOR LOWBIT RATE MOBILE VISUAL SEARCH [J].
Chen, Jie ;
Duan, Ling-Yu ;
Ji, Rongrong ;
Yao, Hongxun ;
Gao, Wen .
2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, :1029-1032
[36]   A Hybrid Mobile Visual Search System With Compact Global Signatures [J].
Chen, David M. ;
Girod, Bernd .
IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (07) :1019-1030
[37]   Fast verification via statistical geometric for mobile visual search [J].
Miaohui Zhang ;
Shaozi Li ;
Xianming Lin ;
Songzhi Su ;
Rongrong Ji .
Multimedia Systems, 2016, 22 :525-534
[38]   Mobile visual search model for Dunhuang murals in the smart library [J].
Zeng, Ziming ;
Sun, Shouqiang ;
Li, Tingting ;
Yin, Jie ;
Shen, Yueyan .
LIBRARY HI TECH, 2022, 40 (06) :1796-1818
[39]   EMOVIS - An Efficient Mobile Visual Search System for Landmark Recognition [J].
Li, Dawei ;
Chuah, Mooi Choo .
2013 IEEE NINTH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2013), 2013, :53-60
[40]   Fast verification via statistical geometric for mobile visual search [J].
Zhang, Miaohui ;
Li, Shaozi ;
Lin, Xianming ;
Su, Songzhi ;
Ji, Rongrong .
MULTIMEDIA SYSTEMS, 2016, 22 (04) :525-534