The solutions for nonlinear Schrodinger equations

被引:0
作者
Ru, Shaolei [1 ]
Chen, Jiecheng [2 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
美国国家科学基金会;
关键词
Schrodinger equation; Global well-posedness; Weak solution; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; BLOW-UP; SCATTERING; OPERATORS; NLS;
D O I
10.1016/j.na.2013.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schrodinger equation {iu(t) +Delta u +/- f(u) = 0, f(u) = vertical bar u vertical bar(2m)u(n), m, n is an element of N, (x, t) is an element of R-N x R u(0, x) = u(0)(x). (*) We give a formal solution of the Cauchy problem (*). By this formal solution, we obtain that there exists a constant B independent of p, N such that for any initial data parallel to u(0)parallel to H-s < B, 0 <= s < N/2, 2m + n = 1 + 4/(N - 2s), the Schrodinger equation (*) has a unique global solution u is an element of L-r (-infinity, infinity; B-p(s),(2)). Moreover, when m = 0, we give a unique (weak) solution of the Cauchy problem (*) in D' (distribution). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 38 条
  • [1] [Anonymous], 1992, Theory of function spaces, DOI DOI 10.1007/978-3-0346-0419-2
  • [2] [Anonymous], 2010, Theory of Function Spaces
  • [3] Uniform decay rate estimates for Schrodinger and plate equations with nonlinear locally distributed damping
    Bortot, C. A.
    Cavalcanti, M. M.
    Correa, W. J.
    Domingos Cavalcanti, V. N.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (09) : 3729 - 3764
  • [4] Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
  • [5] Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case
    Bourgain, J
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) : 145 - 171
  • [6] Bourgain J., 1999, AM MATH SOC
  • [7] Burq N, 2012, MATH RES LETT, V19, P309
  • [8] Qualitative aspects for the cubic nonlinear Schrodinger equations with localized damping: Exponential and polynomial stabilization
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Soriano, J. A.
    Natali, F.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (12) : 2955 - 2971
  • [9] THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS
    CAZENAVE, T
    WEISSLER, FB
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) : 807 - 836
  • [10] CAZENAVE T, 1989, LECT NOTES MATH, V1394, P18