Toll-like receptor signaling alters the expression of regulator of G protein signaling proteins in dendritic cells: Implications for G protein-coupled receptor signaling

被引:100
作者
Shi, GX [1 ]
Harrison, K [1 ]
Han, SB [1 ]
Moratz, C [1 ]
Kehrl, JH [1 ]
机构
[1] NIAID, B Cell Mol Immunol Sect, Immunoregulat Lab, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.4049/jimmunol.172.9.5175
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Conserved structural motifs on pathogens trigger pattern recognition receptors present on APCs such as dendritic cells (DCs). An important class of such receptors is the Toll-like receptors (TLRs). TLR signaling triggers a cascade of events in DCs that includes modified chemokine and cytokine production, altered chemokine receptor expression, and changes in signaling through G protein-coupled receptors (GPCRs). One mechanism by which TLR signaling could modify GPCR signaling is by altering the expression of regulator of G protein signaling (RGS) proteins. In this study, we show that human monocyte-derived DCs constitutively express significant amounts of RGS2, RGS10, RGS14, RGS18, and RGS19, and much lower levels of RGS3 and RGS13. Engagement of TLR3 or TLR4 on monocyte-derived DCs induces RGS16 and RGS20, markedly increases RGS1 expression, and potently downregulates RGS18 and RGS14 without modifying other RGS proteins. A similar pattern of Rgs protein expression occurred in immature bone marrow-derived mouse DCs stimulated to mature via TLR4 signaling. The changes in RGS18 and RGS1 expression are likely important for DC function, because both proteins inhibit Galpha(i)- and Galpha(q)-mediated signaling and can reduce CXC chemokine ligand (CXCL)12-, CC chemokine ligand (CCL)19-, or CCL21-induced cell migration. Providing additional evidence, bone marrow-derived DCs from Rgs1(-/-) mice have a heightened migratory response to both CXCL12 and CCL19 when compared with similar DCs prepared from wild-type mice. These results indicate that the level and functional status of RGS proteins in DCs significantly impact their response to GPCR ligands such as chemokines.
引用
收藏
页码:5175 / 5184
页数:10
相关论文
共 50 条
[1]   Regulation of MHC class I transport in human dendritic cells and the dendritic-like cell line KG-1 [J].
Ackerman, AL ;
Cresswell, P .
JOURNAL OF IMMUNOLOGY, 2003, 170 (08) :4178-4188
[2]   CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells [J].
Aliberti, J ;
Sousa, CRE ;
Schito, M ;
Hieny, S ;
Wells, T ;
Huffnagle, GB ;
Sher, A .
NATURE IMMUNOLOGY, 2000, 1 (01) :83-87
[3]   Immunobiology of dendritic cells [J].
Banchereau, J ;
Briere, F ;
Caux, C ;
Davoust, J ;
Lebecque, S ;
Liu, YT ;
Pulendran, B ;
Palucka, K .
ANNUAL REVIEW OF IMMUNOLOGY, 2000, 18 :767-+
[4]   GAIP and RGS4 are GTPase-activating proteins for the G(i) subfamily of G protein alpha subunits [J].
Berman, DM ;
Wilkie, TM ;
Gilman, AG .
CELL, 1996, 86 (03) :445-452
[5]   Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (Regulator of G-protein Signaling) family members [J].
Bowman, EP ;
Campbell, JJ ;
Druey, KM ;
Scheschonka, A ;
Kehrl, JH ;
Butcher, EC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (43) :28040-28048
[6]   Regulation of interleukin-12 production by G-protein-coupled receptors [J].
Braun, MC ;
Kelsall, BL .
MICROBES AND INFECTION, 2001, 3 (02) :99-107
[7]   Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites [J].
Chaussabel, D ;
Semnani, RT ;
McDowell, MA ;
Sacks, D ;
Sher, A ;
Nutman, TB .
BLOOD, 2003, 102 (02) :672-681
[8]   RGS14, a GTPase-activating protein for Giα, attenuates Giα- and G13α-mediated signaling pathways [J].
Cho, H ;
Kozasa, T ;
Takekoshi, K ;
De Gunzburg, J ;
Kehrl, JH .
MOLECULAR PHARMACOLOGY, 2000, 58 (03) :569-576
[9]   GAIP, A PROTEIN THAT SPECIFICALLY INTERACTS WITH THE TRIMERIC G-PROTEIN G-ALPHA(I3), IS A MEMBER OF A PROTEIN FAMILY WITH A HIGHLY CONSERVED CORE DOMAIN [J].
DEVRIES, L ;
MOUSLI, M ;
WURMSER, A ;
FARQUHAR, MG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (25) :11916-11920
[10]   PHEROMONAL REGULATION AND SEQUENCE OF THE SACCHAROMYCES-CEREVISIAE SST2 GENE - A MODEL FOR DESENSITIZATION TO PHEROMONE [J].
DIETZEL, C ;
KURJAN, J .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (12) :4169-4177