Symplectic Floer homology of area-preserving surface diffeomorphisms

被引:22
作者
Cotton-Clay, Andrew [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA 01238 USA
关键词
MORSE-THEORY; FIXED-POINTS; MASLOV INDEX; FIELD-THEORY; HOMEOMORPHISMS; 4-MANIFOLDS; INVARIANTS; CURVES;
D O I
10.2140/gt.2009.13.2619
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symplectic Floer homology HF*(phi) of a symplectomorphism phi: Sigma -> Sigma encodes data about the fixed points of phi using counts of holomorphic cylinders in R x M-phi, where M-phi is the mapping torus of phi. We give an algorithm to compute HF*(phi) for phi a surface symplectomorphism in a pseudo-Anosov or reducible mapping class, completing the computation of Seidel's HF*(h) for h any orientation-preserving mapping class.
引用
收藏
页码:2619 / 2674
页数:56
相关论文
共 51 条
[1]   TRAIN-TRACKS FOR SURFACE HOMEOMORPHISMS [J].
BESTVINA, M ;
HANDEL, M .
TOPOLOGY, 1995, 34 (01) :109-140
[2]   FIXED-POINTS OF PSEUDO-ANOSOV DIFFEOMORPHISMS OF SURFACES [J].
BIRMAN, JS ;
KIDWELL, ME .
ADVANCES IN MATHEMATICS, 1982, 46 (02) :217-220
[3]   Compactness results in Symplectic Field Theory [J].
Bourgeois, F ;
Eliashberg, Y ;
Hofer, H ;
Wysocki, K ;
Zehnder, E .
GEOMETRY & TOPOLOGY, 2003, 7 :799-888
[4]  
Casson A. J., 1988, LONDON MATH SOC STUD, V9
[5]  
Cieliebak K, 2005, J SYMPLECT GEOM, V3, P589
[6]  
COLIN V, ARXIV08095088
[7]  
COTTONCLAY A, SHARP BOUND FI UNPUB
[8]   SELF-DUAL INSTANTONS AND HOLOMORPHIC-CURVES [J].
DOSTOGLOU, S ;
SALAMON, DA .
ANNALS OF MATHEMATICS, 1994, 139 (03) :581-640
[9]  
Eftekhary Eft04] E., 2004, J SYMPLECT GEOM, V2, P357
[10]  
Eliashberg Y, 2000, GEOM FUNCT ANAL, P560