Boundary layer analysis of the Phan-Thien-Tanner and Giesekus model in high Weissenberg number flow

被引:44
作者
Hagen, T [1 ]
Renardy, M [1 ]
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV,DEPT MATH,INTERDISCIPLINARY CTR APPL MATH,BLACKSBURG,VA 24061
关键词
boundary layer analysis; Weissenberg number; Phan-Thien-Tanner;
D O I
10.1016/S0377-0257(97)00035-9
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We derive the boundary layer equations for the Phan-Thien-Tanner (PTT) fluid and the Giesekus fluid in two-dimensional creeping flow along a hat boundary for high Weissenberg numbers W. While it was show in [M. Renardy, High Weissenberg number boundary layers for the upper convected Maxwell fluid, J. Non-Newtonian Fluid Mech., 68 (1997) 125-132] that the upper convected Maxwell fluid furnishes a boundary layer of order W-1, the PTT model furnishes a thicker boundary layer of order W-1/3, while the Giesekus model leads to a boundary layer of order W-1/2. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 7 条
[1]  
[Anonymous], J NONNEWTONIAN FLUID
[3]   NUMERICALLY STABLE FINITE-ELEMENT TECHNIQUES FOR VISCOELASTIC CALCULATIONS IN SMOOTH AND SINGULAR GEOMETRIES [J].
KING, RC ;
APELIAN, MR ;
ARMSTRONG, RC ;
BROWN, RA .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1988, 29 (1-3) :147-216
[4]   FINITE-ELEMENT ANALYSIS OF STEADY VISCOELASTIC FLOW AROUND A SPHERE IN A TUBE - CALCULATIONS WITH CONSTANT VISCOSITY MODELS [J].
LUNSMANN, WJ ;
GENIESER, L ;
ARMSTRONG, RC ;
BROWN, RA .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1993, 48 (1-2) :63-99
[5]   Re-entrant corner behavior of the PTT fluid [J].
Renardy, M .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1997, 69 (01) :99-104
[6]   High Weissenberg number boundary layers for the upper convected Maxwell fluid [J].
Renardy, M .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1997, 68 (01) :125-132
[7]   A MATCHED SOLUTION FOR CORNER FLOW OF THE UPPER CONVECTED MAXWELL FLUID [J].
RENARDY, M .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1995, 58 (01) :83-89