New contributions for the comparison of community detection algorithms in attributed networks

被引:4
|
作者
Vieira, Ana Rita [1 ]
Campos, Pedro [1 ,2 ]
Brito, Paula [1 ,2 ]
机构
[1] Univ Porto, Fac Econ, Porto, Portugal
[2] LIAAD INESC TEC, Porto, Portugal
基金
欧盟地平线“2020”;
关键词
attributed networks; community detection; clustering;
D O I
10.1093/comnet/cnaa044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Community detection techniques use only the information about the network topology to find communities in networks Similarly, classic clustering techniques for vector data consider only the information about the values of the attributes describing the objects to find clusters. In real-world networks, however, in addition to the information about the network topology, usually there is information about the attributes describing the vertices that can also be used to find communities. Using both the information about the network topology and about the attributes describing the vertices can improve the algorithms' results. Therefore, authors started investigating methods for community detection in attributed networks. In the past years, several methods were proposed to uncover this task, partitioning a graph into sub-graphs of vertices that are densely connected and similar in terms of their descriptions. This article focuses on the analysis and comparison of some of the proposed methods for community detection in attributed networks. For that purpose, several applications to both synthetic and real networks are conducted. Experiments are performed on both weighted and unweighted graphs. The objective is to establish which methods perform generally better according to the validation measures and to investigate their sensitivity to changes in the networks' structure and homogeneity.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Multiple Topics Community Detection in Attributed Networks
    He, Chaobo
    Cheng, Junwei
    Chen, Guohua
    Tang, Yong
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 2199 - 2203
  • [2] Comparison of Community Detection Algorithms on Contracts Networks
    Xiong, Peichen
    Ping, Wei
    Chen, Hao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7474 - 7479
  • [3] A Comparison of Community Detection Algorithms on Artificial Networks
    Orman, Guence Keziban
    Labatut, Vincent
    DISCOVERY SCIENCE, PROCEEDINGS, 2009, 5808 : 242 - 256
  • [4] Community detection in attributed networks for global transfer market
    G. P. Clemente
    A. Cornaro
    Annals of Operations Research, 2023, 325 : 57 - 83
  • [5] Extending Proximity Measures to Attributed Networks for Community Detection
    Aynulin, Rinat
    Chebotarev, Pavel
    COMPLEX SYSTEMS, 2021, 30 (04): : 441 - 455
  • [6] COMMUNITY DETECTION IN ATTRIBUTED NETWORKS USING GRAPH WAVELETS
    Ortiz-Bouza, Meiby
    Aviyente, Selin
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 246 - 250
  • [7] Community detection in attributed networks for global transfer market
    Clemente, G. P.
    Cornaro, A.
    ANNALS OF OPERATIONS RESEARCH, 2023, 325 (01) : 57 - 83
  • [8] Coupled Node Similarity Learning for Community Detection in Attributed Networks
    Meng, Fanrong
    Rui, Xiaobin
    Wang, Zhixiao
    Xing, Yan
    Cao, Longbing
    ENTROPY, 2018, 20 (06)
  • [9] A Late-Fusion Approach to Community Detection in Attributed Networks
    Liu, Chang
    Largeron, Christine
    Zaiane, Osmar R.
    Gharaghooshi, Shiva Zamani
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVIII, IDA 2020, 2020, 12080 : 300 - 312
  • [10] Dual-channel hybrid community detection in attributed networks
    Qin, Meng
    Lei, Kai
    INFORMATION SCIENCES, 2021, 551 : 146 - 167