Visualization methods for understanding the dynamic electroadhesion phenomenon

被引:25
作者
Bamber, T. [1 ]
Guo, J. [1 ]
Singh, J. [2 ]
Bigharaz, M. [2 ]
Petzing, J. [1 ]
Bingham, P. A. [2 ]
Justham, L. [1 ]
Penders, J. [2 ]
Jackson, M. [1 ]
机构
[1] Loughborough Univ, Wolfson Sch Mech Elect & Mfg Engn, EPSRC Ctr Innovat Mfg Intelligent Automat, Loughborough, Leics, England
[2] Sheffield Hallam Univ, Mat & Engn Res Inst, City Campus,Howard St, Sheffield S1 1WB, S Yorkshire, England
基金
英国工程与自然科学研究理事会; “创新英国”项目;
关键词
electroadhesion; field visualization; surface potential measurement; dynamic electrostatic field distribution;
D O I
10.1088/1361-6463/aa6be4
中图分类号
O59 [应用物理学];
学科分类号
摘要
Experimental investigation into the surface potential and electric field visualization of an electroadhesion system is presented for understanding the dynamic electroadhesion phenomenon. The indirect experimental approach has been based on measuring surface potentials on the surface of an electroadhesive pad by an electrostatic voltmeter. The direct approach has been based on charging and discharging the electroadhesive pad in a viscous oil mixed with lightweight particles. The visualization of the dynamic field distribution of electroadhesive pads can be a useful method to understand the dynamic electroadhesion phenomenon. In addition, indication of different field distributions of different pad geometries can be obtained through the method demonstrated here. Furthermore, the method is useful for instructors or lecturers to showcase or teach the dynamic electroadhesion phenomenon.
引用
收藏
页数:8
相关论文
共 15 条
[1]  
Brecher C., 2013, ICCM INT C COMP MAT, P4085
[2]  
Chen R, 2013, IEEE INT C INT ROBOT, P2327, DOI 10.1109/IROS.2013.6696682
[3]   Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion [J].
Graule, M. A. ;
Chirarattananon, P. ;
Fuller, S. B. ;
Jafferis, N. T. ;
Ma, K. Y. ;
Spenko, M. ;
Kornbluh, R. ;
Wood, R. J. .
SCIENCE, 2016, 352 (6288) :978-982
[4]   Ac electrokinetics: a survey of sub-micrometre particle dynamics [J].
Green, NG ;
Ramos, A ;
Morgan, H .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2000, 33 (06) :632-641
[5]   Geometric Optimisation of Electroadhesive Actuators Based on 3D Electrostatic Simulation and its Experimental Verification [J].
Guo, J. ;
Bamber, T. ;
Hovell, T. ;
Chamberlain, M. ;
Justham, L. ;
Jackson, M. .
IFAC PAPERSONLINE, 2016, 49 (21) :309-315
[6]   Experimental study of relationship between interfacial electroadhesive force and applied voltage for different substrate materials [J].
Guo, J. ;
Bamber, T. ;
Petzing, J. ;
Justham, L. ;
Jackson, M. .
APPLIED PHYSICS LETTERS, 2017, 110 (05)
[7]   Optimization and experimental verification of coplanar interdigital electroadhesives [J].
Guo, J. ;
Bamber, T. ;
Chamberlain, M. ;
Justham, L. ;
Jackson, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (41)
[8]   Investigation of relationship between interfacial electroadhesive force and surface texture [J].
Guo, J. ;
Tailor, M. ;
Bamber, T. ;
Chamberlain, M. ;
Justham, L. ;
Jackson, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (03)
[9]   Toward Adaptive and Intelligent Electroadhesives for Robotic Material Handling [J].
Guo, Jianglong ;
Bamber, Thomas ;
Zhao, Yuchen ;
Chamberlain, Matthew ;
Justham, Laura ;
Jackson, Michael .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02) :538-545
[10]  
Jianglong Guo, 2015, Key Engineering Materials, V649, P22, DOI 10.4028/www.scientific.net/KEM.649.22