Region Extraction and Classification of Skin Cancer: A Heterogeneous framework of Deep CNN Features Fusion and Reduction

被引:180
作者
Saba, Tanzila [1 ]
Khan, Muhammad Attique [2 ]
Rehman, Amjad [3 ]
Marie-Sainte, Souad Larabi [1 ]
机构
[1] Prince Sultan Univ, Coll Comp & Informat Sci, Riyadh 11586, Saudi Arabia
[2] HITEC Univ, Dept Comp Sci & Engn, Museum Rd, Taxila, Pakistan
[3] Imam Mohammad Ibn Saud Islamic Univ, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
关键词
Skin cancer; Augmentation; Contrast improvement; Boundary extraction; Deep learning; Features selection; SEGMENTATION METHODS; IMAGE SEGMENTATION; DERMOSCOPY IMAGES; BORDER DETECTION; LESION DETECTION; TUMOR; DIAGNOSIS; DISEASES; REMOVAL; NETWORK;
D O I
10.1007/s10916-019-1413-3
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Cancer is one of the leading causes of deaths in the last two decades. It is either diagnosed malignant or benign - depending upon the severity of the infection and the current stage. The conventional methods require a detailed physical inspection by an expert dermatologist, which is time-consuming and imprecise. Therefore, several computer vision methods are introduced lately, which are cost-effective and somewhat accurate. In this work, we propose a new automated approach for skin lesion detection and recognition using a deep convolutional neural network (DCNN). The proposed cascaded design incorporates three fundamental steps including; a) contrast enhancement through fast local Laplacian filtering (FlLpF) along HSV color transformation; b) lesion boundary extraction using color CNN approach by following XOR operation; c) in-depth features extraction by applying transfer learning using Inception V3 model prior to feature fusion using hamming distance (HD) approach. An entropy controlled feature selection method is also introduced for the selection of the most discriminant features. The proposed method is tested on PH2 and ISIC 2017 datasets, whereas the recognition phase is validated on PH2, ISBI 2016, and ISBI 2017 datasets. From the results, it is concluded that the proposed method outperforms several existing methods and attained accuracy 98.4% on PH2 dataset, 95.1% on ISBI dataset and 94.8% on ISBI 2017 dataset.
引用
收藏
页数:19
相关论文
共 69 条
[11]   Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks [J].
Bi, Lei ;
Kim, Jinman ;
Ahn, Euijoon ;
Kumar, Ashnil ;
Fulham, Michael ;
Feng, Dagan .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2017, 64 (09) :2065-2074
[12]   EPILUMINESCENCE MICROSCOPY - A USEFUL TOOL FOR THE DIAGNOSIS OF PIGMENTED SKIN-LESIONS FOR FORMALLY TRAINED DERMATOLOGISTS [J].
BINDER, M ;
SCHWARZ, M ;
WINKLER, A ;
STEINER, A ;
KAIDER, A ;
WOLFF, K ;
PEHAMBERGER, H .
ARCHIVES OF DERMATOLOGY, 1995, 131 (03) :286-291
[13]   Border detection in dermoscopy images using statistical region merging [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Iyatomi, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. ;
Malters, Joseph M. ;
Grichnik, James M. ;
Marghoob, Ashfaq A. ;
Rabinovitz, Harold S. ;
Menzies, Scott W. .
SKIN RESEARCH AND TECHNOLOGY, 2008, 14 (03) :347-353
[14]   Automated Quantification of Clinically Significant Colors in Dermoscopy Images and Its Application to Skin Lesion Classification [J].
Celebi, M. Emre ;
Zornberg, Azaria .
IEEE SYSTEMS JOURNAL, 2014, 8 (03) :980-984
[15]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[16]  
Codella N. C., 2018, BIOM IM ISBI 2018 20
[17]   Visual saliency detection using information contents weighting [J].
Duan, Qichang ;
Akram, Tallha ;
Duan, Pan ;
Wang, Xiaogang .
OPTIK, 2016, 127 (19) :7418-7430
[18]   Independent histogram pursuit for segmentation of skin lesions [J].
Gomez, David Delgado ;
Butakoff, Constantine ;
Ersboll, Bjarne Kjaer ;
Stoecker, William .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (01) :157-161
[19]   A Novel Skin Lesion Detection Approach Using Neutrosophic Clustering and Adaptive Region Growing in Dermoscopy Images [J].
Guo, Yanhui ;
Ashour, Amira S. ;
Smarandache, Florentin .
SYMMETRY-BASEL, 2018, 10 (04)
[20]  
Gutierrez- Arriola JM, 2017, ARXIV170304845