From reactive Boltzmann equations to reaction-diffusion systems

被引:29
|
作者
Bisi, M.
Desvillettes, L.
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[2] CNRS, UMR 8536, ENS Cachan, CMLA, F-94235 Cachan, France
关键词
reaction-diffusion; Boltzmann equation; diffusion approximation;
D O I
10.1007/s10955-005-8075-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the reactive Boltzmann equations for a mixture of different species of molecules, including a fixed background. We propose a scaling in which the collisions involving this background are predominant, while the inelastic (reactive) binary collisions are very rare. We show that, at the formal level, the solutions of the Boltzmann equations converge toward the solutions of a reaction-diffusion system. The coefficients of this system can be expressed in terms of the cross sections of the Boltzmann kernels. We discuss various possible physical settings (gases having internal energy, presence of a boundary, etc.), and present one rigorous mathematical proof in a simplified situation (for which the existence of strong solutions to the Boltzmann equation is known).
引用
收藏
页码:881 / 912
页数:32
相关论文
共 50 条
  • [1] From Reactive Boltzmann Equations to Reaction–Diffusion Systems
    M. Bisi
    L. Desvillettes
    Journal of Statistical Physics, 2006, 124 : 881 - 912
  • [2] LATTICE BOLTZMANN COMPUTATIONS FOR REACTION-DIFFUSION EQUATIONS
    DAWSON, SP
    CHEN, S
    DOOLEN, GD
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (02): : 1514 - 1523
  • [3] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [4] PARTICLE-SYSTEMS AND REACTION-DIFFUSION EQUATIONS
    DURRETT, R
    NEUHAUSER, C
    ANNALS OF PROBABILITY, 1994, 22 (01): : 289 - 333
  • [5] SOLUTIONS TO SYSTEMS OF NONLINEAR REACTION-DIFFUSION EQUATIONS
    ROSEN, G
    BULLETIN OF MATHEMATICAL BIOLOGY, 1975, 37 (03) : 277 - 289
  • [6] Reaction-Diffusion Equations with Applications to Economic Systems
    Ganguly, Srinjoy
    Neogi, Upasana
    Chakrabarti, Anindya S.
    Chakraborti, Anirban
    ECONOPHYSICS AND SOCIOPHYSICS: RECENT PROGRESS AND FUTURE DIRECTIONS, 2017, : 131 - 144
  • [7] REGULARITY ANALYSIS FOR SYSTEMS OF REACTION-DIFFUSION EQUATIONS
    Goudon, Thierry
    Vasseur, Alexis
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2010, 43 (01): : 117 - 142
  • [8] Amplitude equations and chemical reaction-diffusion systems
    Ipsen, M
    Hynne, F
    Sorensen, PG
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (07): : 1539 - 1554
  • [9] Lattice Boltzmann study of pattern formation in reaction-diffusion systems
    Ayodele, S. G.
    Varnik, F.
    Raabe, D.
    PHYSICAL REVIEW E, 2011, 83 (01):
  • [10] Amplitude equations for wave bifurcations in reaction-diffusion systems
    Villar-Sepulveda, Edgardo
    Champneys, Alan
    NONLINEARITY, 2024, 37 (08)