A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations

被引:40
作者
de la Llave, Rafael [2 ]
Valdinoci, Enrico [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 04期
基金
美国国家科学基金会;
关键词
Aubry-Mather theory; Quasi-periodic solutions; Calculus of variations; Comparison; Possibly degenerate and fractional operators; Subordination; Gradient flow; CAHN TYPE EQUATION; ELLIPTIC-EQUATIONS; PERIODIC MEDIA; GROUND-STATES; STATISTICAL-MECHANICS; CRITICAL-POINTS; MIXED STATES; MODEL; INTERFACES; OPERATORS;
D O I
10.1016/j.anihpc.2008.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss an Aubry-Mather-type theory for solutions of non-linear, possibly degenerate, elliptic PDEs and other pseudo-differential operators. We show that for certain PDEs and psi DEs with periodic coefficients and a variational structure it is possible to find quasi-periodic solutions for all frequencies. This results also hold under a generalized definition of periodicity that makes it possible to consider problems in covers of several manifolds, including manifolds with non-commutative fundamental groups. An abstract result will be provided, from which an Aubry-Mather-type theory for concrete models will be derived. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1309 / 1344
页数:36
相关论文
共 88 条
[1]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[2]   MONOTONE RECURRENCE RELATIONS, THEIR BIRKHOFF ORBITS AND TOPOLOGICAL-ENTROPY [J].
ANGENENT, SB .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :15-41
[3]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[4]  
[Anonymous], 1962, PARTIAL DIFFERENTIAL
[5]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[6]  
[Anonymous], 1996, Partial Differential Equations: Basic Theory, DOI DOI 10.1007/978-1-4684-9320-7
[7]  
[Anonymous], 1948, Functional Analysis and Semi-groups
[8]  
Appell J., 1990, CAMBRIDGE TRACTS MAT, V95
[9]  
AUBRYMATHER WE, 1999, COMMUN PURE APPL MAT, V52, P811
[10]  
BANGERT V, 1989, ANN I H POINCARE-AN, V6, P95