A METRIZABLE TOPOLOGY ON THE CONTRACTING BOUNDARY OF A GROUP

被引:20
作者
Cashen, Christopher H. [1 ]
Mackay, John M.
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern pl 1, A-1090 Vienna, Austria
基金
英国工程与自然科学研究理事会; 美国国家科学基金会; 奥地利科学基金会;
关键词
Contracting boundary; Morse boundary; boundary at infinity; contracting geodesic; divagation; QUASI-GEODESICS; STABILITY; GEOMETRY; PROJECTIONS; DIVERGENCE; SPACES;
D O I
10.1090/tran/7544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The 'contracting boundary' of a proper geodesic metric space consists of equivalence classes of geodesic rays that behave like rays in a hyperbolic space. We introduce a geometrically relevant, quasi-isometry invariant topology on the contracting boundary. When the space is the Cayley graph of a finitely generated group we show that our new topology is metrizable.
引用
收藏
页码:1555 / 1600
页数:46
相关论文
共 41 条
[11]  
Bridson M. R., 1999, FUNDAMENTAL PRINCIPL, V319
[12]   Quasi-Isometries Need Not Induce Homeomorphisms of Contracting Boundaries with the Gromov Product Topology [J].
Cashen, Christopher H. .
ANALYSIS AND GEOMETRY IN METRIC SPACES, 2016, 4 (01) :278-281
[13]   Contracting boundaries of CAT(0) spaces [J].
Charney, Ruth ;
Sultan, Harold .
JOURNAL OF TOPOLOGY, 2015, 8 (01) :93-117
[14]  
Charney Ruth, 2017, ARXIV170707028V1
[15]   Morse boundaries of proper geodesic metric spaces [J].
Cordes, Matthew .
GROUPS GEOMETRY AND DYNAMICS, 2017, 11 (04) :1281-1306
[16]   Stability and the Morse boundary [J].
Cordes, Matthew ;
Hume, David .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 :963-988
[17]  
Cordes Matthew, 2017, ARXIV170407598V1
[18]  
Cordes Matthew, 2016, ARXIV160708899V1
[19]   Spaces with nonpositive curvature and their ideal boundaries [J].
Croke, CB ;
Kleiner, B .
TOPOLOGY, 2000, 39 (03) :549-556
[20]   Hyperbolically Embedded Subgroups and Rotating Families in Groups Acting on Hyperbolic Spaces [J].
Dahmani, F. ;
Guirardel, V. ;
Osin, D. .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 244 (1156) :1-+