A characterisation of the Daugavet property in spaces of Lipschitz functions

被引:36
作者
Garcia-Lirola, Luis [1 ]
Prochazka, Antonin [2 ]
Rueda Zoca, Abraham [3 ]
机构
[1] Univ Murcia, Dept Matemat, Fac Matemat, E-30100 Murcia, Spain
[2] Univ Bourgogne Franche Comte, Lab Mathemat, UMR 6623, 16 Route Gray, F-25030 Besancon, France
[3] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
Daugavet property; Space of Lipschitz functions; Lipschitz-free space; Length space; Strongly exposed point;
D O I
10.1016/j.jmaa.2018.04.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Daugavet property in the space of Lipschitz functions Lip(0)(M) on a complete metric space M. Namely we show that Lip(0)(M) has the Daugavet property if and only if M is a length metric space. This condition also characterises the Daugavet property in the Lipschitz free space F(M). Moreover, when M is compact, we show that either F(M) has the Daugavet property or its unit ball has a strongly exposed point. If M is an infinite compact subset of a strictly convex Banach space then the Daugavet property of Lip(0)(M) is equivalent to the convexity of M. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:473 / 492
页数:20
相关论文
共 29 条
[1]   Lipschitz structure of quasi-Banach spaces [J].
Albiac, F. ;
Kalton, N. J. .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 170 (01) :317-335
[2]  
Aliaga R., PREPRINT
[3]  
[Anonymous], 2001, IR MATH SOC B
[4]  
[Anonymous], 1993, LECT NOTES MATH
[5]  
Becerra J., 2006, LONDON MATH SOC LECT, V337, P91
[6]  
Benyamini Y., 2000, AM MATH SOC C PUBL, V1
[7]   Narrow operators and the Daugavet property for ultraproducts [J].
Bilik, D ;
Kadets, V ;
Shvidkoy, R ;
Werner, D .
POSITIVITY, 2005, 9 (01) :45-62
[8]  
Bridson M. R., 1999, GRUND MATH WISS, V319, DOI DOI 10.1007/978-3-662-12494-9
[9]  
Burago D., 2001, A Course in Metric Geometry, DOI [10.1090/gsm/033, DOI 10.1090/GSM/033]
[10]   ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES [J].
Cuth, Marek ;
Doucha, Michal ;
Wojtaszczyk, Przemyslaw .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) :3833-3846