Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms

被引:151
作者
Kennedy, N
Brodie, E
Connolly, J
Clipson, N [1 ]
机构
[1] Univ Coll Dublin, Dept Ind Microbiol, Microbial Ecol Grp, Dublin 4, Ireland
[2] Univ Coll Dublin, Dept Stat, Dublin 4, Ireland
关键词
D O I
10.1111/j.1462-2920.2004.00638.x
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A microcosm-based approach was used to study impacts of plant and chemical factors on the bacterial community structure of an upland acidic grassland soil. Seven perennial plant species typical of both natural, unimproved (Nardus stricta, Agrostis capillaris, Festuca ovina and F. rubra) and fertilized, improved (Holcus lanatus, Lolium perenne and Trifolium repens) grasslands were either left unamended or treated with lime, nitrogen, or lime plus nitrogen in a 75-day glasshouse experiment. Lime and nitrogen amendment were shown to have a greater effect on microbial activity, biomass and bacterial ribotype number than plant species. Liming increased soil pH, microbial activity and biomass, while decreasing ribotype number. Nitrogen addition decreased soil pH, microbial activity and ribotype number. Addition of lime plus nitrogen had intermediate effects, which appeared to be driven more by lime than nitrogen. Terminal restriction fragment length polymorphism (TRFLP) analysis revealed that lime and nitrogen addition altered soil bacterial community structure, while plant species had little effect. These results were further confirmed by multivariate redundancy analysis, and suggest that soil lime and nitrogen status are more important controllers of bacterial community structure than plant rhizosphere effects.
引用
收藏
页码:1070 / 1080
页数:11
相关论文
共 57 条
[1]   PHYSIOLOGICAL METHOD FOR QUANTITATIVE MEASUREMENT OF MICROBIAL BIOMASS IN SOILS [J].
ANDERSON, JPE ;
DOMSCH, KH .
SOIL BIOLOGY & BIOCHEMISTRY, 1978, 10 (03) :215-221
[2]  
[Anonymous], 1996, SOIL SCI SOC AM BOOK
[3]  
Baath E, 1996, FEMS MICROBIOL ECOL, V19, P227, DOI 10.1111/j.1574-6941.1996.tb00215.x
[4]   Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques [J].
Bååth, E ;
Anderson, TH .
SOIL BIOLOGY & BIOCHEMISTRY, 2003, 35 (07) :955-963
[5]   Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: A microcosm experiment [J].
Bardgett, RD ;
Keiller, S ;
Cook, R ;
Gilburn, AS .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (04) :531-539
[6]   Seasonality of the soil biota of grazed and ungrazed hill grasslands [J].
Bardgett, RD ;
Leemans, DK ;
Cook, R ;
Hobbs, PJ .
SOIL BIOLOGY & BIOCHEMISTRY, 1997, 29 (08) :1285-1294
[7]   Plant species and nitrogen effects on soil biological properties of temperate upland grasslands [J].
Bardgett, RD ;
Mawdsley, JL ;
Edwards, S ;
Hobbs, PJ ;
Rodwell, JS ;
Davies, WJ .
FUNCTIONAL ECOLOGY, 1999, 13 (05) :650-660
[8]  
Bardgett RD, 1996, BIOL FERT SOILS, V22, P261, DOI 10.1007/BF00382522
[9]  
Blackstock TH, 1999, GRASS FORAGE SCI, V54, P1, DOI 10.1046/j.1365-2494.1999.00157.x
[10]   Interactive effects of pH and substrate quality on the fungal-to-bacterial ratio and QCO2 of microbial communities in forest soils [J].
Blagodatskaya, EV ;
Anderson, TH .
SOIL BIOLOGY & BIOCHEMISTRY, 1998, 30 (10-11) :1269-1274